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: § ORIENTATION
v
i This is Part V of a six-part report on the results of an
X5
e investigation into the problem of determining the scattered field
f;' resulting from the interaction of a given electromagnetic incident
f.n wave with a perfectly conducting body executing specified motion and
357 deformation in vacuum. Part I presents the principal results of the
?l"‘.
ﬁ:} study of the case of a general motion, while Part II contains the
ﬁi, specialization and completion of the general reasoning in the situation
L]
L.
::? in which the scatteringbody is stationary. Part III is devoted to
e
"ﬂ the derivation of a boundary-integral-type representation for the
. ;
25 scattered field, in a form involving scalar and vector potentials.
o
0 Parts IV, V, and VI are of the nature of appendices, containing the
"5'-.': . . .
;‘} proofs of numerous auxiliary technical assertions utilized in the
e, first three parts. Certain of the chapters of Part I are sufficient
A ; .
Ef; preparation for studying each of Parts III through VI. Specifically,
s"‘
i the entire report is organized as follows:
iﬁ: Part I. Formulation and Reformulation of the Scattering
o Problem
AP
I
VR Chapter 1. Introduction
"a' Chapter 2. Manifolds in Euclidean Spaces.
4 . Regularity Properties of Domains
fff [Summary of Part VI)
:; Chapter 3. Motion and Retardation
o’ ' {Summary of Part V]
.
a::
&
:;“.E
L
g,
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Chapter 4. Formulation of the Scattering Problem.
Theorems of Uniqueness

Chapter 5. Kinematic Single Layer Potentials
[Summary of Part 1IV]

Chapter 6. Reformulation of the Scattering Problem

s Part II. Scattering by Stationary Perfect Conductors
[Prerequisites: Part I]

3
¥4
s%ﬁ Part III. Representations of Sufficiently Smooth Solutions
ro- of Maxwell's Equations and of the Scattering

o Problem

\ [Prerequisites: Section [I.1.4], Chapters [I.2
:' and 3], Sections [I.4.1] and [I.5.1-10]]

ta

‘:3 Part IV. Kinematic Single Layer Potentials

.- [Prerequisites: Section [I.1.4], Chapters [I.2
¥ and 3]]

: |

- Part V. A Description of Motion and Deformation. Retardation
% of Sets and Functions

; [Prerequisites: Section [I.1.4], Chapter [I.2]]
¥ Part VI. Manifolds in Euclidean Spaces. Regularity

o Properties of Domains

W (Prerequisite: Section [I.1.4]]

:; The section- and equation-numbering scheme is fairly self-
Y

:3 explanatory. For example, "[1.5.4]" designates the fourth section of
\J .

- Chapter 5 of Part I, while "(I.5.4.1)" refers to the equation numbered
j; g (1) in that section; when the reference is made within Part I,

;i however, these are shortened to "[5.4]" and "(5.4.1)," respectively.
d

- Note that Parts II-VI contain no chapter-subdivisions. "[IV.14]"

i: indicates the fourteenth section of Part IV, "(IV.14.6)" the equation
.)’

-$ numbered (6) within that section; the Roman-numeral designations are
Cad

< never dropped in Parts II-VI.
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A more detailed outline of the contents of the entire report

appears in [I.1.2]. An index of notations and the bibliography are

!\ also to be found in Part I. References to the bibliography are made
\.‘

¢:: by citing, for example, "Mikhlin [34]." Finally, it should be

e

:; ) pointed out that notations connected with the more common mathematical

concepts are standarized for all parts of the report in [I.1.4].
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1OS

I\:».’

EZ; ) A DESCRIPTION OF MOTION AND DEFORMATION.

RETARDATION OF SETS AND FUNCTIONS

. We concern ourselves here with a precise mathematical realiza-
L%, tion of a fairly broad class of physical bodies moving and deforming
&SE in space; of course, to be subsumed here is the possibility that the
Eié body under consideration is fixed. In so doing, we shall be specifying
fi the types of regions in space~time in which we are studying electro-
xﬁz magnetic scattering phenomena, as well as providing the groundwork for
iﬁ? the introduction of certain potential functions defined and examined
{,3 in Chapter [I.5] and Paét IV. Also, the results of this Part V

éﬁ allow us to set up, in Chapter [I.4], the requisite exact classical

4?3 formulation of the family of scattering problems under consideration,
Ax‘ as initial-boundary-value problems for Maxwell's equations.

.,

,S% We begin with the basic definition of a "motion," and establish
{E various geometric and topological implications of this definition.

“ii Subsequently, we take up the connections between a motion and character-
335 istic cones. Finally, the basic classes of "smooth" motions are

‘;: ' defined, and their important properties are described.

=

;5 ) As always, c¢ denotes the constant appearing in Maxwell's

ot

equations, representing the speed of light in vacuum.
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[V.1] DEFINITIONS. Let M denote the family of all

ordered triples ({B;}CEIR’ R, x), wherein

(1) for each 7 €R, B; is a non-void, compact, and

regularly closed subset of ]R3 possessing connected

3

complement, while R CR™ 1is non-void and compact;

3

(i1) x: ORR + R~ 1is a continuous function such that, for

each 7 €ER, x(-,z): 9R ->]R3 is an injection taking
3R onto 3Bc; moreover, Xx(P,*) 1s Lipschitz con-

tinuous on R, uniformly as P ranges over 3R, with

c® = sup { 2 1 3| P € oR; ;19C2 ER,

()]
g ¥ ‘2} € [0,c);

(141) whenever 7 €R and (;i):_l is a sequence in R

which converges to %, then

lim A

{i+ >

3(B;:lAB;) = 0;

and
(iv) vhenever Z €R and Z € ch, there exists a positive
number n(Z,%) such that for each ¢ € (0,n(Z,3)],

there can be found continuous functions Pie’ {-€,e) >
3 3

R” and Pge’ [-e,e] -+ R™ satisfying
3 =0
Pre(®) € BL@TE 4
and ¢ whenever le] < e. (2)

3, .-
p._(£) € B“(zZ) NB' ’
Ee € C+%E

B "N R ol btd A e B ATRLS Sl




Define an equivalence relation & on M by declaring that,

if ({Bi )EM for 1 =1 and 2, then

({BIC}CER’ Rl’ xl)&({BZ;}(,G]R’ Rz, xz) iff there exists a continuous

bijection Flz: 3R1 > aRz such that
X; (B,8) = x,(F,,(P),5) for each P€ 3R, LER. (3)

Then a motion is an equivalence class of elements of M under the

equivalence relation &.

Let MCM be a motion, and ({BC} R, x) EM: R 1is

Z€R’
termed a reference set, x a motion function, and (R,x) a reference

pair for the motion M. A property or quantity associated with

({B;};QR’ R, x) 1s said to be intrninsic to M 1iff it is possessed :".

by or characteristic of every element of M. .

e

[v.2] REMARKS. We shall maintain here the notation of [V.1].

(a) It is known that the collection of all subsets of ]R3 with

finite Lebesgue measure is a (complete) metric space when equipped with

the metric given by (A,B) » 13(AAB), with the understanding that
sets A and B for which 13(AAB) = 0 are to be identified (so that,
more precisely, we must consider the corresponding collection of
equivalence c'lasses); cf., ¢.9., Hewitt and Stromberg [20]. Now,
Postulate [V.1.11i] say.s that the map  + BC on IR into this metric
space is continuous, a most reasonable requirement from the standpoint
of intuition. Condition [V.1.1ii] is used only in the proof of the

extremely important "intermediate-value," or "boundary-crossing,"
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FIGURE 2. Body moving and deforming in space-time
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rli; Lemma [V.9], 4ngra. If the latter can be proven by using only [V.1.i
rl -

28

N and ii) (which we have not succeeded in doing, but strongly suspect

P is possible), a concomitant economization of [V.1l] would be in order,

through the deletion of ([v.l.iii].

o
(b) The status of condition {V.l.iv] is not unlike that of
NN .
,:;{ [V.1.iii]: we have found |V.1l.iv] to be a sufficient condition under
N which the urgentf& needed statement of Proposition [V.27], {njra, can
be verified; if, as we believe to be entirely possible, [V.27] can be
.;_*-l
'js substantiated solely on the basis of [V.l1l.i and ii], then it would be
ed
e permissible to-do away with Postulate [V.1l.iv}. 1In fact, it appears
i)
reasonable to expect that [V.1l.iv] follows from [V.l1.i and ii], in
E:: which case we could, of course, certainly eliminate the former from
::: [v.1]. It shall follow from the upcoming Lemma [V.12], which is proven
without recourse to [V.l.iv], that whenever [ €ER, 2Z € ch, and
..‘. € >0, then
A
v 3 o )
BJ(2)NB° | 48,
, S Sl 3
o :
'.f;.'
o and } for |g| < €.
P hl
LA
BJz)B' | 48,
i S )
7
3:} Thus, the axiom of choice can be invoked to conclude that there exist
L 4
-"'.’
e functions on [-e,e] into IR3 for which (v.1.2) holds; the important
additional assertion of [V.1l.iv] is that continucus functions of this
{; sort can be found, for all sufficiently small € > 0 (depending on
- Z and 7).
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In any event, we must point out that [V.l.iv] is a fairly weak

restriction on the collection {BC}GE and is satisfied in most

]R’
cases of practical interest. In particular, it is fulfilled when each
GBC is a (2,3;1)-manifold, and even when some or all of the sets

(aB;}GﬂR exhibit corners and spikes, provided these are neither "too
severe" nor "too closely spaced.” On the other hand, it is easy to
generate examples in‘yhi;h each 38; possesses very severe corners,

spikes, and cusps, but for which [V.1.iv] holds. For more details

concerning this matter, one should consult [V.28-30].

(c) If the number c* of (V.1.1) is equal to zero, then

conditions [V.1.1ii and iv] are trivially fulfilled; cf., [V.5.c].

(d) The inequality c* < ¢ of (V.1.1) is crucial for later
developments, exerting a decisive effect on the geometry of a motion in
space-time; this will become clear as we proceed. Loosely speaking,
the condition demands that "the 'speed' of each 'point on the surface

of the moving body' is always less than c."

(e) & 41s indeed an equivalence relation on M: 1its
reflexivity and transitivity are certainly easily verified, while to
check its symmetry we need only observe that, with notation as in [V.1],

since 3R, 1is compact, the continuous bijection Flzz aRl - aRZ is

1
in fact a homeomorphism, so its inverse F21: BRZ > BRI is a con-
tinuous bijection, with xz(P,;) = xl(FZI(P),;) for P E€ BRZ and

t €ER.

(f) For each [ €R, the requirement of [V.1.1i] that BC be

T e T 7 FUET 94 7 T 4 @ ¢+ T g4 T« " =

AR S S

A

&

‘L‘AA“ijl-"
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regularly closed, 4.2., that Bg' = Bz’ implies that Bg is non-void, .
B® and B' are regularly open, and 3B_ = 3{B°} = 3{B'}. :
4 4 < g g -

H

(g9 let 7 €ER. By [V.1l.ii1], x(-,2): 3R -+ BB; is a

continuous bijection, whence the compactness of 3R shows that this map

is a homeomorphism. Thus, the collection {{aBs}s'ElR’ R} consists of

DR & DY (O SR T  W

pairwise homeomorphic sets.

a_a_a r o

(h) Let M be a motion. We can already identify several

intrinsic properties of M:

1) c*, as computed from the Definition (V.1.1), using any
. element ({B;}LEIR’ R, xX) €EM
[Indeed, if also ({BE}CE]R’ R,
the corresponding constant by E*, then the equality

X) € M, and we denote
c* = &* is a simple consequence of the existence of a
bijection F: 3R » 3R such that x(P,g) = X(F(P),Z)

for each P € 3R and ¢ €R, as one can readily check,

A indinddiod ot et 0 eibeddincddnd o RN s W R R L P PAIBK .

with (v.1.1).],

(11) B;, for each ¢ € R, wherein ({Bs}ﬂ, R, x) €M

[For, suppose that ({B; <€R’ R, x) 1is also in M, and

let F: 3R -+ 3R be as in (i). Choose z €ER. Then

3B, = x(3R,z) = X(F(3R),z) = X(3R,¢) = 28} .

ARY

.:-:: Thus, since BC and BE are closed, we have BC =
o U8, = BOUIB: B: C B

ti-‘. BC aB; . ] : and 3 : ¢ SO

\:,:.

19!
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~'MB_ = B>'N(8%53B>) = B:'nB°
BC BC BC (BCuaBC) BC BC ’

and we can write )

IIN  XNA RN SR

~'- '-'nou ~ln'.
BC (BC BC) (BC BC)

l! From this, upon recslling that BE' is connected
({v.1.1]), and observing that BE'NBZ and B;'n8;
are mutually separated (since this is certainly true of
Bg and Bé), we deduce that exactly one of the sets
32'082 and BE'hBi is empty. If the latter were

empty, we should find that BE' C B;, which is clearly
impossible, since BE' is unbounded, while Bc is
bounded. Therefore, Bg'ﬁsz = @, whence Bz -t BE,

and BC - Bz- c BE. We are led to the reversed inclusion

by similar reasoning, so BE = B and BC is indeed

C’
intrinsic to M.],

and

(111) UPEQR x(P,R), the set swept out by the "particle paths”
for M, wherein (R,x) 1is any reference pair for M
[This follows easily from (ii), since the set in

question is just VU ch-].

€R

(j) Let M be a motion. Fix ¢ € R. There exists a reference
pair for M of the form (Bg,xc), wherein §; is the intrinsic
"position" of the motion at the "time" 7, and x;(',c) is the

identity function on ?B;. To see this, let ({Bs}sER’ R, x) € M, and

e

%
\
~
\1
-~
f
=
o

I Do o M R L

LT

LA LA



denote the inverse of x(°*,g): O8R =+ aBC by le

X aB;xR-»m3 by setting

: _BB; + 3R, Define

x;(Y,s) 1= x(le(Y),s) for each Y € SBC, s €R.

Clearly, x‘(-,;) is the identity on BBC. In order to check that
({Bs}sE]R’ BC' x;) €M, we observe first that the requirements of

[v.1.i, 114, and iv] are obviously fulfilled. Concerning the satisfaction
of the conditions of [v.l1.ii], we begin by noting that the map (Y,s) >
(le(Y),s) is continuous on BBC*IR onto 3RxR (the coordinate

functions of the map are continuous, since le:

continuous), while x: OR®R ->1R3 is continuous, so xC is continuous,

ch + 3R 1is

as the composition of these two maps. Next, for any s €R,
x°(e,8) = X(le(')’s): BBC + 3B 1is injective, for le and x(+,s)
are injections. Further, X;]'(BBC) = 3R, while X(3R,s) = 855, so

X;(asc’S) = %8_. Finally,

lXc (Yosz)‘X;(Y.Sl) I 3

sup T32'31| | Y€ aB;; 8,18, € R, sy ¢ s,
|x(P,s,)=x(B,s) |4
= gup Isz_sll l P € 3R; 8:s8, €R, s ¥ s,

- C* €. [0,c),

with c* denoting the intrinsic constant for M; the second equality

4

follows from the definition of x~ and the fact that le(aB;) = 3R.

We can now assert that ({Bs}ﬂ, B, x;) € M; there remains only the

4
verification that this ordered triple is in M, 4(.e., is &-equivalent
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:\" to ({Bs}séR’ R, x). But this follows directly from the fact that
ot -
ﬁ X;1= 8BC + 3R 1is a continuous bijection and the very definition of
:-.::::: x;. Thus, (B;,xc) is a reference pair for M. |
2R |
t\‘__'.‘ (
- (k) As usual, let M be a motion, and ({B_ )} __, R, x) € M. :
L § ZER
We have demanded only that M possess a sort of "continuity,” in the ,
sense prescribed by the continuity of x and the map ¢+ BC (cf.,
(a)); no smoothness conditions have been placed on either X or the
boundaries 3R and {aBC}CelR' We shall later define and study various
classes of motions which do possess such smoothness, after examining
certain implications of the general definition of [V.1], £.e., after
-exploiting the basic continuity postulates as far as we can.
(1) The class of physical moving bodies which can be modelled
by using our definition of "motion" 1is limited principally by the
assumption that the boundaries {aBC}CGIR are mutually homeomorphic.
Thus, we can describe, for example, the simultaneous movement of a
collection of bodies, but it is evident that these can be permitted
neither to fuse together nor even collide, nor can any one split apart;
such a deficiency may prove to be prohibitive in certain contemplated
applications. On the other hand, short of breaking up or bending over
to touch itself, any one body can be permitted to undergo quite severe
deformations, while its movement in the rigid-body sense is unrestricted,
so long as c* < c.
[v.3] NOTATIONS. Let M be a motion. Throughout the sequel,
the symbols BC (for each 7 €R) and c¢* shall be reserved for the
o
.'.\4
5
X

-




intrinsic properties of M as in [Vv.2.h.i and 1i], while (R,x)

shall always denote a reference pair for M. For each [ €R, we

.
Ll Bt i Aaf A & LA e Am x x ol

shall write, whenever it is convenient to do so, xc = x(*,2):
R » ch; of course, just as in Remark [v.2.j], the inverse of this
homeomorphism 1s denoted by x;]': BBC + 3R. Thus, ‘
-1 -1 )
x(x; (2),3) = xc(xc (2)) =2 for each [ ER, Z € ch, (1)
[
and ]
XC(®,0) = XM () = P for each TER, PER. ()
Further, x*: OR<R ->]R4 is the function given by
x*(P,z) := (x(P,z),z) for each PE€ R, ¢ ER. (3)
We introduce the subsets B and 9° of ]Rl' via
B =Yg {B;x{r.}}, (4)
and
I aR! = ' .
9 =B = Uy {ch{;}}. (5)
Whenever A C]R" and 7 €R, the ¢g-dection of A, A; C1R3, is
defined by
Ac i= (Y em3| (Y,z) € A}, (6)
- Evidently, we can write A = U {A x{z}}, while for the sets B
e . CER " ¢

.. l.l

and Q° associated with the motion M, we have BC = 8; and

L
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;:Z:f' Qg = 82 for each 7 €R. Finally, if A C]R“ and I 4is an interval
in R, we define A; cr according to

B : 3

s A = {(Y,0) € Al £ €1} = AR =1}, )
o

>

M~ [Vv.4] DEFINITION. Amotion M is said to be null, or

e stationany , 1ff c* = 0. n.

ey .
iy [v.5] REMARKS. (a) Let M be a null motion. From (V.1.1),
!\ with c¢* = 0, 41t is clear that x(P,;l) = x(P,;z) if P € 3R and
{o,'

A 818, €R. Then 38; = x(aR,Cl) = x(aR,CZ) = BBC , with which reason-
1 2

o ing as in [V.2.h.ii] shows that B = B whenever Z.,7., €ER the

& %, 1’72

fC body is stationary. Note, however, that it is easy to find an example
*:';\. of a nonstationary motion for which B_ =B whenever Z_,7, €ER;
A 2 &y 1°*2
{ as a particularly simple one, consider a closed ball spinning about its
»,
s fixed center. It turns out that if such a motion models the movement
Ao
" of a perfectly conducting body, the motion is "essentially null"

‘.4

insofar as its electromagnetic scattering properties are concerned,

.'J'.

5; {.e., the solution of a scattering problem associated with such a motion
\--

.

;ﬁ will be the same as the solution of the problem obtained by replacing
s

- the "essentially null" motion with the corresponding null motion,

"\
\:i leaving all else the same.
N
ot (b) Obviously, with any set B C]R3 having all of the

N properties cited in [V.1.1], there 1is associated a unique null motion
. P

.

. " . om
o M: generate an element of M as ({B;}:GR’ B, x), wherein B; := B
~

‘-f for each  €R, and x(P,;) := P for each P € 3B and [ €R. Take
o
ﬁp
o
o)
O]
Lo
@

Y
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X
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B
.~

M to be the &-equivalence class in M which contains ({BZ,}CeIR’ B, ).

. R

(¢) I1f we construct a triple ({BC}CEIR"R’ x) as in [V.1l.i
and ii] for which c¢* = 0, then, just as in (a), we find that

B, =B
G &

fulfilled. But if [ €ER, Z € 83;, and € > 0, we need only choose

whenever’ cl,;z € R. Then condition [V.1.iii] is certainly

%)
8.

*® %4 & ¥ T ¥ .07
FREAR) L
. (P KL ‘

s I T T

- 3 (] 3 oam ‘=
:, YIe € BE'(Z)f'B;, YEe € BE(Z)ﬁBE and set pIE(E) : YIe’ pEs(E) : YEE:

AR

ol

for IEI < € to conclude that [V.l.iv] obtains, as well.

We continue to accumulate consequences of Definition [V.1].

rl'.- For the proof of [V.7], we shall invoke the following general fact:
A

3 [v.é] LEMMA. Let T1 and T2 be metrnic spaces. Suppose that
h\.\ -

;:i f: T »T, isa continuous bijection such that whenever K, 4is

“-'

a compact subset o4 Tz' thene exists a comresponding compact
K, C T1 duch that K

| A
-

c f(Kl). Then f"1 48 continuous, L.e.,

p;J 1 2
N f is a homeomorphism. :
) ]
- 3
i PROOF. This follows from the somewhat more general result of !
. L
:' Appendix V.A. a. :
- ]
-‘.. - <
::‘; [v.7) PROPOSITION. Let M beamotion, (R,x) a reference 3
[P
! pair for M, and x*: 3RR-+R* as in [V.3]. x* 44 a homeo-
p ,
X monphism of 3R<R onto the set U _ {3B x{zg}}.
N (&R g h
¢ K
oy J
: PROOF. We have x*(P,z) := (x(P,z),z) for each P € 3R, !
Ly bl
o { €R, showing that the coordinate functions of x* are continuous .
by ‘
N on JRM, since those of x are. The continuity of x* follows. :
l\l ..
% q
¢ 3
7. :
;
e

-

oA
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For each ¢ €R, x(*,%Z) 1is bijective from 3R onto BBC, so

x*(+,z) 1is bijective from 3R onto aBKX{C}; the bijectiveness of
x* from 3RXR to U;GIR {BBC*M}} follows readily. The continuity
of x* as a map into Rl' implies its continuity as a map onto

U;em {BBCX{C}} equipped with the relative topology. To show that

*-1, U;QR {aB;X{C}} -+ 3R 1is continuous, we apply Lemma [V.6].

Suppose, then, that K C U;ER {SAB;X{C}} is compact. Then K is

bounded, so |x4| <N for each x € K, for some N > 0. This gives

K<Y er-n,N

is compact in JRXIR, we sece that x* has the property required of

{aB;x{c}} = y*(3Rx[-N,N]). Noting that 3Rx[-N,N]

2
of course, equipped with the metric inherited from IRa). Thus, ¥

f in [v.6], when 'l'1 = 3R<R and T, = Ucﬂ! {BBCX{C}} (which are,
*-1

is continuous. .

Observe that x*-l(Z,c) = (le(z),l), for £ €ER and

1

Z € ch. The coordinate functions of x*- are continuous, by [(V.7],

so the coordinate functions of the map (Z,7) ~ x;l(z) are also

continuous. Consequently, we have proven

iv.8] COROLLARY. Let M be amotion, and (R,x) a

1

neference pain fon M. Then the map (Z,5) » x. (2) 48 continuous

4

on Ucen {chx{c}} onto 23R.

Statements [V.9] through [V.13] are expressions of the con-
tinuity, Lipschitz continuity, and "speed" properties of a motion. We

shall rely heavily on these results in later arguments.

(v.9] LEMMA. let M be a motion. Suppose that X €m3, with
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(o] ‘ .
€ NB' .
X B;l BCZ don some SN ER (40 %y ¥ c,zl Then there exAsts
at Least one ¢ between & and Zq fon which X € ch'

PROOF. Let I denote the closed interval with endpoints and

31

gy Set A, := {y € II X € B:} and A, := {y€ I|] XE€E B;}. Neither

1 2

Al nor A2 is empty, since 2 € Al and %y € A

presently that A

2° We shall show
1 and A2 are mutually separated ({.e., AlﬁA2 =0
and AlﬁAE = @); if we assume, for the moment, that this has been
accomplished, the proof of the lemma follows quickly. 1In fact, I

is connected, so the union A1UA of the non-void and mutually

2
separated subsets A1 and A2 of I must be a proper subset of 1I.
That is, there must exist some g € Iﬂ(AlUAz)', for which we then
have X € Bg'“ﬂc = Bé-ﬁB; = asc, as required (obviously, ¢ ¥ Ty

; # ;2).

To show that A1 and A, are mutually separated, we introduce

2
the auxiliary function y¢: 1 + [0,x) given by

Y(u) := dist (x,aBu) = inf {lx+Y|3| Y € aBu} for each y € I.

Selecting a reference pair (R,x) for M, it is clear that we can

also write
y(u) = inf {IX-X(P,u)I3| P € 3R} for each u€I, (1)

since x(3R,u) = aBu' for each u € R. From (1), the continuity
of y can be proven: letting e > 0, (1) shows that we can find

for each y € I a point Pu . € 3R with |X-x(Pu c,u)|3 < p(w)+(e/2).
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Then, if u and & are in I, we have, with (1) and (v.1l.1),

vE) () < 'X‘X(PH’E,Q13'|X‘x(Pu’e,u)]3+-;—

€
< Ixe, 8)-x(e g+ 3

< c*|g-u|+ % .

Upon interchanging the roles of £ and u in this estimate and
supposing that |u-g£| < €/2c*, it follows that |[y(E)-y(u)]| < €.
Thus, ¢ 1is continucus. To prove that AEF\AZ = @, assume, to the

contrary, that there exists some € A.NA,. Then XE€ Bl'1 s SO

u
0 172 0

W(uo) > 0. Also, we can find a sequence (un)nsl in A, which con-

verges to u,; the continuity of ¢ showing then that lim y(u ) =
0 N e n

W(uo), we shall suppose that w(un) > % w(uo) for each n €N, as
we may without loss. Setting § :-% w(uo), it is clear that
so

Bg(x) C Bu f\B"j , Since {“n)er:al C A

and u, € A
n O 0

1 2°
' 4 3 p
A, (B NB' ) > =a6~ > 0, for each n €EN.
3 L -3

However, this contradicts property [V.l.iv], which says that

A,(B. MB' ) < A.({B. MB' JU{B' NB. })
3 My ¥ 3 H, Mg I

=X, (B AB )~=+0 as n -+ o,
3 Mo Mo

Thus, A_”Az = §. Similarly, if we suppose that A NMA. contains a

1 172
point 50, we can find a sequence (En):.1 in A2 and converging to
EO for which
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A,(B! N8B, ) > 2 ng3 for each n €N,

3¢ £E.° =3
n 0

vherein & := %-w(&o) > 0. This is again impossible by [V.1l.iv], for

we must have

A, (Bl NB_ ) <A (B_AB, ) +0 as n + ®,
3€n€ 3£n€0

0

Thus, A1 and Az are mutually separated. As noted, this completes

the proof of the lemma. O.

[v.10] L E MM A. let M be amotion. 1§ z €R and & > c*,

3
C BZ / € .
then BC"'E BCIEI(BC) gon each ¢ €ER, € ¥ 0

PROOF. Choose EER, £ # 0. Let Y € B3

&le
dist (Y,BBq) := inf {IZ—Y|3| Z € aB;} > &lg|l, and Y€ Bé. Suppose,

I(BC) , So that

however, that Y € BC+£ = Bg+£UBB . From Lemma [V.9]), we conclude

g+

that Y € aBu for some u € I, where I 1s the half-open interval
with endpoints ¢ and g+g, 1ncluding <Z+£. Choose a reference
pair (Bu,xu) for M, where xu(-,u) is the identity on aBu;
cf., [V.2.3]. Then, on the one hand, the condition dist (Y,BBC) >

¢le] gives, since x"(Y,z) € 38;,
I v, e+ed-v | S+ (v, 0¥, > &,
while, on the other,
RS R (I P AR (N N e B2 N SRR I PR I B S AN

< c*ilertoul+le-c ) = exle] < gl

> B M e s - & £ n a s




3
z L C ]
so BC|€|(BC) BC+

This contradiction implies that Y € B£+E’ £

which gives the desired conclusion. a.

For future convenience, the following immediate consequences

of {v.10] are set down:

[V.11] COROLLARY. let M be amotion, g €R, and & €

(c*,c).

. 3
{£) BC-E C BEE(BC) g§on each & > 0.

(<L) 1§ e >0, then B ch(Bc) whenever ¢ €R,

13
le-cl| < e/se.
[V.12] LEMMA. Let M be a nonstationary meticn (s0 c* > 0).
Suppose 2z €1R3, 7 €ER.
. fo) (o] 1_
(4) 1§ z€ B;, then 2z € B;+g gorn |g| < = dist (Z’BBC)'

.o . ' _1_
(L) 14 zesé, then ze3c+6 gorn |g| < o3 dist (z,aB;).

A 3 o
(&) 14 z € aBC and 6 > 0, <zthen Bé(z)ﬁBc_‘_E#o and

B3(2)BL,, ¥ 8 for 5] < 5.

PROOF. (1) Set n := dist (Z,ch); then n > 0. Fix £ €R,

with 0 < |£| < %; n, and suppose, contrary to the conclusion, that
€ Bov - '~ = RY (WF) . -

z T4E B;+€ BC+E B;_’_5 Let 1 denote the half-open interval

including z+f, with endpoints ¢ and Z+£. Using Lemma [V.9],

there must exist u € I such that Z € BBu, whence 2 = x(PZ,u) for

some Pz € 3R; (R,x) 1is any reference pair for M. Since Z € Bz,




-22-

E...-\!
. g
~L
"

).-
.
<,

T e
[As

Ry

X(PZ,C) € 3Bc, we must have

b 1
.{'

IX(PZ,C)-x(PZ.u)l3+|x(Pz,c+€)-x(Pz.u)I3 > n,

Ay
LI N N Y

while the sum on the left in this inequality is also < c*{|¢-u|+|g+s-u]} =

i N A
e als

L
.

c*l&l < n. This impossibility shows that Z € B§+ , and completes the

2
proof of (i).

(11) Retrace the steps of the proof of (i), mutatis mutandis.

(11ii) Choose any reference pair (R,x) for M. Then

Z-x(Pz,c) for some P, € 3R. Fix £ €R with || <%;6. Since

Z

Ix(P, . c+£)-x(P,,0) |5 < c*|g]| <6,

we conclude that x(Pz,c+§) € B?(Z), L.e., Bg(z) is a neighborhood

3 '
of x(Pz,;+E) € 38C+ . Obviously, then, B‘S(Z)f‘\B;+€ ¥ #. But also,

2

. o-
BC+€ is regularly closed, {.e., BC+€ BC+E’

x(Pz,;+£) is the limit of a sequence of points in B§+

since x(P,,z+¢) €

E’ SO

as well.

o+’

the neighborhood Bg(z) of x(Pz,c+£) must meet B°

LHE’
This completes the proof. 0.

Lemma (V.12] clearly implies that, for any motion M and

any ZGIR3, the sets {Z € R| ZGBE}, {z €R| ZEBE} are

each open in R (so that {{ €ER| z € 3BC} is closed, a fact which

can also be proven more directly).

{Vv.13] LEMMA. Llet M be a motion, zem3, t€ER, and € > 0. R

(£} 14 Bz(z) C B;, then I(Z)' c 8% whenever

3
Be—cle- £

oft
-t
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..\ »
o £EER with |e-t| < ele;
. 3 ™~ 3 - '
i : | () 14 B_(z) € B; , <then BE-CIE-Cl(Z) c BE whenever
N ) .
2 £EER with |e-t| < e/c;
LY
*‘.‘
. L3
) recall the convention BO(Z) = {Z}.
.p‘ ) PROOF, (i) Observe that we actually have Bz(z) c Bz. Suppose
La
"
f that £ €R and 0 < |&-g| <ef/lc (if € =g, the desired conclusion
0
’l
\ has already been pointed out); assume that Y €1R3 with |Y-Z|3 <
»w - 3 o
. -cle- < but Y € BY' = B'” = B'U3B,. Si Y€ B (2) € B,
o € clE ] (< e, u £ Bg B€ ng nce Bs( ) BC
~“_:N [V.9] shows that there is some u €IR, either lying between £ and
. { or equal to &, such that Y € aBu. For convenience, choose the
::: reference pair (Bu,xu) for M, where xu(-,u) is the identity on
S
o
":\: 3B . Then
u
& . Ixu(Y’C)'Y|3+|Xu(Y’E)‘Y|3 3 IXU(Y;“:)'YI3
AL
,
\

e & AL

o

jv

X, 0-2] -1 ¥-2]

v > e-(e-cle~z])

\.,'

A

2 = cle-g] > c*|g-g]

.

,. (having noted that x"(Y,z) € 3Bc, so Ixu(Y,I;)—Z|3 > ¢), but also
i PRI (U MO AR PR P ¢ S P ¢ AT IC PR e N e SN TN
< c*(fo-ul+le=u]) = c*|g-z];

this impossibility implies that Y € Bg. Thus,

AR YN AR A L R

3 - o
C
Bocle-g| @ © B

S T T R T A T+ (VA YO N V-\"““\':\'.\"'\':\'""'~':\':
3 . a A =, - . ) .
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i :
[:E:: and the proof of (i) is complete.
r'.'-:'_f 1
(i1) Observe that we actually have 32(2) c B;'o; since BE
. - L
is regularly open, it follows that 82(2) C Bé. Assume that Y em3 1
Cs
: 4
: with IY-Z|3 < e-cle-z], but Y€ BE' where £ €R has been chosen 1
. with 0 < |£-g] < e/c. Since Y € B:(Z) C B!, [V.9] implies that !
K
there exists a y €ER with the properties listed in the proof of (i). '
E
Retrace the steps of the proof of (i) to arrive at a contradiction, b
forcing the conclusion that Y € Bé, hence that B:-clz—cI(Z)- c Bé. 0. a
:‘ Recall the definition of the set AC CIR3 associated with :
:': any A C]Rl', t €R; cf., [V.3].
[v.14] LEMMA., Llet ACR® and ¢ eR. Then
‘;:
: ) (A%< (A)°
N ‘ .
. ( ( . A
o » - C - .
' i) )™ e Ay
: (Lid) acA) € (b .
. PROOF. (1) Suppose Y € (Ao)c. Then (Y,z) € Ao, so there is
<.
::c some € > 0 such that {ri(2)+|5-612}1/2 < e implies (Z,£) € A,
J.
o Thus, in particular, rY(Z) < e 1implies :(2,z) €EA, or Z € AC.
g Consequently, B:(Y) C Ac, so YE€E (Ac)o.
N .
; 3
(i1) Suppose Y € (AC)-' Then B:(Y)NAC ¥ ¢ for each e > 0, :]
X
so for each € > 0 there is some Y, E]R3 such that rY(Ye) < ’J
j and Y € A;. Then, for each ¢ > 0, (YE.C) € B:(Y,C)M, giving ::
/) (Y,z) € A", so that Y€ (A‘);. 9

PGSy W |
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where we have used (ii) and the obvious facts that (AC)' = (A');,

4
and Al;nAZC = (AlnAZ)c’ for Al’AZ CR . a.

wey WY

e

M I O

We are now prepared to prove that the setss B and QU,

intrinsic to a motion M, possess a number of desired properties. ‘;‘
[v.l5] THEOREM. Llet M be a motion, and B C]R", Q° cml’
the associated sets as 4in [V.3]). Then .

o

(4) B 4is closed; Q L& open;

(L 0 Oy . 0 - 17y :
(L) B U;en {B; {c}}; « UcEIR {Bc {z});
s e (e .
(L) B =230 = U;EIR {chX{c}},
o

(dv) B 48 negularly closed; Q° 48 negularly open;
{v) a° 4is connected;

lvd) 4§ (R,x) 48 a reference pain for M, then y*

provides a homeomoaphism of 3RxR onto 3B.

PROOF. (i) Let ((Yn,;n))z CB =V {ch{;}} be a sequence

ER
converging to (Y.,Z.) E]R". Note that Y € B for each n €N,
0’"0 n ta
lim Yn = Yo, and lim ;n - ;0. The proof that B 1is closed is

n-+ o n-+o

complete once it has been shown that (Yo,;o) €B, 4{.e., that
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YO € BC . Now, if € > 0, there is an n(e) € N such that
0

r, (Y ) <e¢ and |z -z | <€ whenever n > n(e). According to

Yo n n 0 -

[v.11.i1], we then have BC C Bz(BC ) whenever n > n(e/c), where
n 0

¢ € (c*,c). Assume that Y, € B' : since B is closed,

A := dist (Y,B_ ) > 0, and it is easy to see that B

(B)
% 8/3

(¥p) Bal3

@. However, choosing n > max {n(4/3), n(a/38)}, we=find both

Yu € B (Y ) and Yn € BC C B (B ) This contradiction implies

a/3 n

a/3

that YOE BC s as required. Thus, B 1is closed. Then Q° =B’
0

is open. .-

(ii) Recall that IB; = B; for each 7 € R. Suppose we have

shown that Bg c as°)C for each 7 €ER; then, [V.14.i] giving the

reversed inclusion CB°) cC(@® )° = B°, we shall have CB°) Bz
for all ¢, whence B° = {CB ) "{C}} {B X{C}) and

O~ em'™ o g% = U o, .U . .

Q B B €R {BC X{C}} €R {BC X{;}}. Thus, the entire

‘statement of (ii) will follow by establishing the inclusion Bg -

mo); for each 7 €R.

Accordingly, fix ¢ €R, and suppose Y € Bg. Then BS(Y) C

BC for some ¢ > 0. By [V.13.i], whenever £ € R with I;-gl < ele,

. 1 1 3
4.8., f~T€<E <+, then Be-clc-g

it is easy to find a neighborhood of (Y,z) 1lying in B. Indeed, the

I(Y) c Bg. With this fact,

open "pillbox" /Z(Y) [ - -;—C- , o+ ;—c contains (Y,z) and is also
in B, for, whenever - §2_c- < f < ;+;—c s, then e-c];-zl > ¢e/2, so
3 3

C .
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3 X —e— E-— = 3 ' x
Be/Z(Y) [C 2c ° c+ 7c UC € ceers e {BE/Z(Y) {g}}
RTINS
S {ng{s}} CB.
G- ?C- <£<C+-2-C_

Consequently, (Y,Z) E]BO, whence Y € OBO)C. This proves that
Bg c OBO)I; for each § € R, from which statement (ii) follows, as

we have already decided.

(iii) Choose Z € R. We shall show that (3]B)C C BOBC):

again, since B = B;, we have BCIB;) = 38;. let Y€ (alB)c, so

4
(Y,z) € 9B. We cannot have Y € Bg, for then, by (ii), Y€ CBO)C,
giving (Y,z) € B®, which contradicts (Y,z) € 3B. Thus, Y€ B‘;".
Also, since B 1is closed, (Y,z) € 3B implies (Y,z) € B, so

Y G]B; - B;. Hence, Y € BcﬁBg' = BanlE- = BBc (BC is closed).
This shows that (3]8); c acm;) = BBC. Meanwhile, [V.14.ii1i] gives
BCBC) Cc (3]8);. We have then shown that (3]8)c = 38;, for each

7 €R, which implies the assertion of (iii), for now we can

write

B = U;em {(am);x{c}} = U;em {aB;x{;}}.

(iv) We must show that B =B°". Since B is closed,
B° CB. Now let (Y,z) € B, so YE BC = Bg-, the latter
equality holding since BC is regularly closed ([V.1.1i]). There-

fore, there is a sequence (Yi)I in Bg converging to Y.
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Certainly, the sequence ((Yi'C))I converges to (Y,z), and lies
in B‘zx{;} € B®°, by (i1). This shows that (Y,z) € B°", and
completes the proof of the fact that B 1is regularly closed. But

then ° 1is regularly open, since ° =B'.

(v) For each 7 €R, B& is open and connected in IR3,

sd it is pathwise connected. Then BQX{C} is pathwise connected
in ]Rl'. If we construct a continuous function p: R ->IIR3 such

that p(z) € Bé for each ¢ € R, then the function p*: R ->]R4
given by p*(z) := (p(2),z), ¢ €R, shall be continuous, with

p*(g) € 3&"{C} for each { € R. The pathwise connectedness of

U;GR {BIEX{C}} = Q° would be an immediate consequence of these

facts, whence the connectedness of 0% would follow, in turn.

Thus, the proof rests upon showing that there is a function p

with the required properties. To construct one, choose Y G]R3
and o > 0 such that 30 c B:(Y). Since BC c 32|C|(80) for
each { €ER,  # 0, by [V.10], where ¢ has been chosen in

(c*,c), it follows easily that BC C B§+E|C|(Y) for each 7 € R,
vhere o := p+ diam By (in view of the inequality ry(Z) <

dist (Y,Bo) +dist (Z,BO) +diam 30, z E]R3). Thus, we have merely

to exhibit a continuous function p: R ->]R3 such that p(g) €

3

85+5|C‘(Y)' for each ¢ €R, so it suffices to choose any

v € 333(0) and set p(g) := Y+(o+c|z|)y, T €R.

(vi) In [V.7], it was demonstrated that x* provides a
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homeomorphism of 3RXR onto UCQR {3BCX{C}}, but now (iii) says

that the latter set is just oB, .

It is essential, for later developments, to examine the set-
theoretic and topological connections between a motion (in particular,
between the sets B and 2°) and characteristic cones in ]R['. We
now digress to prepare some general facts in this direction, later
returning to consider their implications in the setting of present

interest.

[v.16) DEFINITIONS. (i) Let xem3, t €ER. The

backward [forward] characternistic, or Light, cone with vertex at

(X,t) 1s the set C_(X,t) [C (X,t)] CR® given by

- 4 3 - 1
c[;](x,:) = {(Y,z) ER| YER", ¢ c[;] c (Dl

3
It is easy to show then that C_(X,t) = U <t {ch(t-a) (X)x{g}} and

3

3 3
C+(X,t) =V ¢ {3Bc(5_t)(X)x{£}}, where BO(X) = (X}.

£2]

(1i) Let Pr: ]R" -*R3 denote the projection map (Y,g)

Y, for YEIRB, z €ER.

3

(111) Let XE€R>, t €R. Define P 3.t

R +R by

(X,t)°

P(X,t) (Y) := (Y, t- % rx(Y)) for each Y € ]R3.
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Then, for A C]R“, define the retandation of A nelative to (X,t)

to be the set A(X,t) C B3 given by

A(X,t) := y(A) = {yemrl| p

-1
P(X,t x,t

[v.l7] REMARKS. (a) The continuity of Pr and P(X £)
*

for each (X,t) € Rl', is obvious.

(b) 1If X€R3, t €ER, P(x £) is clearly just the inverse
]

of the continuous bijection Pr| C_(X,t): C_(x,1) ->]R3, S0 P(X £)
is a homeomorphism of R3 onto C_(X,t).

{(e¢) For AC]RI', g €R, the Z-section of A, AT, (cf.,

[v.3]), is easily seen to be just Pr (An{m?‘x{c}}).

The following alternate characterizations of the retardation
of a set with respect to a point are useful; the first and third

also afford a convenient means for visualization; cf., Figures 6 and 7.

[v.18] PROPOSITION. Let AC]Rl‘, XERB, and t €ER.

Then

(£) A(X,t) = Pr (AC_(X,t)) ; in particular, A(X,t) 4s

non-void iff A~C_(X,t) 48 non-void:

(i4)  A(X,t) = {Y €R3l YEA

1
)(Y) = (Y9 t- ‘c_ rX(Y)) € A}- 0.

\
Y
1
\
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‘]R (Time)

| BC_(x,¢)

~aBAC_(X,t)

N
B(X,t)x{0}

3B(X,t)x{0}

R3 (Space)

FIGURE 6. Retarded sets associated with
a motion (cf., [V.18.1])




3
// chc (X) nBt-

0 %o

;}

— 3
R~ (Space)

FIGURE 7. Generation of B(X,t) (cf., [V.18.4i1])




3 Rad NN S S iC A G A T SRR SR A A AP . I AL S N L T A S L L i i i i ‘.".".T‘.'*."."."?""‘.‘"."'.";F"'q
S S R S T e St e Ve e e e e . . LN B - U T .

-33-

v

3 3
(Ld) A(X,t) = Ys0 {ancc(x)ﬁ.At_c}, where By(X) := {X}.

= _ PROOF. (i) If Y€ A(X,t), then (Y, t- % r (1) €A, by
3 definition of A(X,t), while clearly (Y, t- % r (1) € C_(X,1).
*- Since Y = Pr (Y, t~- % rx(Y)), Y € Pr (AC_(X,t)). On the other
‘\:2'. hand, if Y € Pr (ANC_(X,t)), then (Y,z) € ANC_(X,t) for some

aE§ g €R, which must be t- % rx(Y), éince (Y,z) € C_(X,t). Thus,

(¥, t- % r, (D) €A, so YE AL,

\

*'

o 1
0 (11) YE€A(X,t) Lff (Y, t- T, () €A, 1ff YE
Y

% A 1 o
| t=- ry rx(Y)

“ ‘ (i11) If Y € A(X,t), set Ly i %— rx(Y). Then Y €
." 382 (X), and YE A 1 = At- . Now, suppose Y€
. y t- < 1, (Y) 2 4

“

-

-~ 3

.-": chc(x)Mt-c’ for some ¢ > 0. Then rx(Y) = ¢z, giv:_lng g =
Sy 1D, andso YEA . Thus, Y€ A(X,t). O.
'::\ t- -C- rX(Y)
N

) 3
" [Vv.19] PROPOSITTION. Llet XER™, t ER.
B (i) 1§ AcR®, then A(X,t)' = A'(X,t), 40
27
-
2, A(X,t)' = Pr (A'"C_(X,t)) = {Y €er} vea | }
- t- < rx(Y)
.
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(i) 1§ A ] €1} 4s any family of subsets of R,

then
{UIGI AI}(x’t) = UlEI Al(x,t),

N ep AN D) =N p A (X,0).

. ' = -1 -1
PROOF. (i) Simply mote that A'(X,t) =Py (X, t)

A(X,t)', and then the remaining statements of (i) follow from [Vv.18].

(A") = {P (A)}'=

-1 -1
(11) {Uzel Al}(x,t) = P(x,t)(UIEI A1) = UIGI p(x,t)(Al) =
UIEI Al(x,t). The second statement 1s proven in the same manner. a.
4 3

[v.20] PROPOSITTION. let ACR', X€ER, tE€R.
(4) 14§ A 48 open [closed], then A(X,t) 48 open [closed];
(i) A(x,t)” € AT(X,t);
(Lid)  A°(x,t) € Ax,0)%;

. 3
(Lv]  3{A(X,t)} C {3A}(X,t) = chp {ch;(X)n(aA)c-;}'
PROOF. (1), (41), and (iii) follow from the definition A(X,t) :=

-1
Px, (X, t)°

well-known necessary and sufficient conditions for the continuity of

t)(A) and the continuity of P upon recalling the various

a function from one topological space to another, in terms of inverse

images.

(iv) The inclusion here is proven by using (ii), [V.19.i],

and the second statement of [V.19.1i1], writing
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3{A(X, )} = A(X,t) PA(X,t) '™ = A(X,t) MA'(X,t)”

CAT(X, t)A' (X, t) = {ATPA'T}(X,t)
= {3A}(X,t).
The equality is simply an application of [V.18.1iii]. 0.

It shall also turn out to be important to know how X is

situated relative to A(X,t), both set-theoretically and topologically.

In general, we have the following facts concerning this question:

(v.21] PROPOSITION, Let ACIR“ XEIR3, t €ER. Then

(4] X€ AL 4§ (X,1) € A;
(i4) X € AEX,0)° 4 X,¢) € A%
({ih) X € A(X,t) ' 4§ (X,t) €A7';
(dv)  (X,t) € 3A 4§ X € 3{A(X,t)}.

PROOF. (1) Xe€ A(x,t) 1iff P(x,:)(X) € A. But P

(x,t).

(11) From (1), (X,t) € A° implies that X € A%(X,t) C

A(X,t)o, the latter inclusion being just [V.20.iii].

(111) Using (1), if (X,t) € A™', then, since A ' = A'®,

we find X € A'%(X,t) € A"(X,t)° = A(X,£)'° = A(X,t)” .

(iv) By [v.20.iv], X € 3{A(X,t)} gives X € {3A}(X,t),

.........

(X, 1) X) =

Aot B

iR A fon

...........
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- so (1) shows that (X,t) € 3A. 0.

.:;
( In general, statements stronger than [V.20.ii-iv] and
S,
E::‘ [V.21.1ii-1iv] cannot be made, as simple counterexamples will show. We
-? should like to identify a family of subsets of ]R4 for which the .
| inclusions of [V.20.ii-iv] can be strengthened to equalities, and for 3
f which the converses of [V.21.ii-iv] are also true. Moreover, this .
family should include B and Qo, for any motion M, and we shall l

demand that any retardation of a closed [open] set in the family be i
_:. regularly closed [open]. The next definition identifies such a family. .
3 4
. [V.22] DEFINITION. Let ACR . Then we say that A 1is of

: Zype (te) iff whenever X,Y E]R3, t€R, and (Y, t- % rx(Y)) € A,

-

‘ then {Bz(Y)XR}PC_(X,t) meets both A° and A'® for each ¢ > 0. WM.
ﬂ iv.23] REMA RKS. The designation "type (t2)" is meant to be

N
-:: reminiscent of the term "time-1like" (which already has a technical

% significance in the study of hyperbolic partial differential equations). :
< In the retardation notation, the condition (Y, t- % rx(Y)) € 3A :
E can be restated as just Y € Pr (3ANC_(X,t)) = {3A}(X,t). Since the ~
’.: definition is symmetric with respect to A and A', A cR® is of ;
_.. type (t2) i1iff A' 1is of type (ti). ]Ra and @ satisfy the definition

-~

:«: vacuously, since each has empty boundary. Otherwise, <{.2., if A is :
: a non-void proper subset of ]Rl', then in order for A to be of
;r. type (ti), it is certainly necessary that A° and A'® be non-void. :
:.E Note also that if A 1s of type (t&) and (X,t) € 3A, then ’
:' {Bz(x)"R}r”C_(X,t) meets both A° and A'® for each ¢ > 0, whence X
q

v N
w v
v
S
b}
y A)




......

it easily follows that (X,t) € Ao.ﬂA'o-; it is not surprising, then,
that if A is open [closed], it is necessarily regularly open [closed];

cf., [V.26.v], infra.

Finally, for X,Y EIR3, t€R, and € > 0, we record the

obvious equality

{B:(Y)XR}f‘C_(X,t) = {(z, t- % rx(Z))[ Z em3, ry(2) < el

[v.24] PROPOSITION. Let A C:mﬁ be of type (t2). Cheese

3

XER’ and t €R. Then

({)  A%(X,t) = A(X,t)%;

.. ' 3 .

() 3{A(X,t)} = {3A}(X,t) = U;_>_0 {BBCC(X)ﬁ(aA)t_C}:
in particular, there 48 nc ambiguity 4in the meaning of
the symbel "sA(X,t)";

did) AT(x,t) = AX,t)7;

(dv) 4§ A 4s closed [open], A(X,t) 48 negularly closed

{open};
(v) 4§ A 48 closed [open], A 4is negularly closed [open].

PROOF. (1) According to {v.20.iii], we need only prove the
inclusion A(X,t)o C A9(X,t). Then let Y€ A(X,t)o. Bz(Y) C A(X,t)

for some ¢ > 0, so Z € A(X,t), 4L.e., (2Z, t-%rx(Z))EA,

3

whenever Z € R~ and rY(Z) < ¢. That is,

P

UL - PP

e 40 0 _€ B
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(BIORINC_(X,8) = (2, t- T (2)] Z€R>, ry(2) < e} C A

S

A
s

In particular, {B:(Y)xR}ﬁC_(X,t) does not meet A'®, so we cannot

o
ff; have (Y, t- %-rx(Y)) € 5A, since A is of type (t2). We do have
Nt
T 1 1
N Y € A(X,t), so (Y, t- = r(Y)) € A. Thus, (Y, t-=r_(Y)) €
¢ X c X

ﬁi ANGA)' = A%, so Y€ A°(X,t), and the proof of (i) is complete.
3
o (11) According to [V.20.iv], we need only prove the inclusion
\* {3A}(X,t) C 3{A(X,t)}. Suppose Y € {3A}(X,t), so that
e
b Y, t- %-rx(Y)) € 3A. 1If we assume that Y € A(X,t)°, then, just as
N
'it in the reasoning of (i), we find {Bz(Y)XRJnC_(X,t) C A for some
o €. > 0, which is impossible, since A 1is of type (t2) and

(Y, t- %-rx(Y)) € 3A. Similarly, the assumption that Y € A(X,t)'® =

A'(X,t)® 1leads to the inclusion {B?(deR}ﬂC_(X,t) C A' for some
tP § > 0, which is again an impossibility, since A 1is of type (tg).
- Thus, we must have Y € A(X,t)°'NA(X,t)'®" = A(X,t) ' MA(X,t)” =
o
b a{A(X,t)}.
A
g (iii) VUsing (ii) and [V.19.ii], we can write
o
o AT(X,t) = {AU3A}(X,t) = A(X,t)U{3A}(X,t)
N = A(X, t)U3{A(X,t)} = A(X,t) .
¥
e
ﬁ (iv). Suppose A 1is closed. Then A(X,t) is closed, so

a

A(x,:)°' C A(X,t). To prove the reversed inclusion, let Y € A(X,t).
We can suppose that Y € 3{A(X,t)}, for, A(X,t) = A(X, ) Ua{A(X, 1))

(since A(X,t) 1is closed) and the assumption Y € A(X,t)® obviously

-
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leads to Y € A(X,t)°". Now, by (1i), Y € 3{A(X,t)} = {3A}(X,t),
so (Y, t- %-rx(Y)) € 5A. But, A being of type (t2), we then know

3 1 3
that {B_(Y>RIC_(X,t) = {(Z, t- 2 rx(Z))I ZERT, ry(2) <e}

meets A° for each ¢ > 0. Clearly then, we can construct a sequence

@ 3 1 (o]
(7‘1)1 CR” such that il-j:mm Zi Y and (Zi, t- 2 rX(Zi)) € A

for each 1 €N, 4.e., Zi € A%x,t) = A(X,t)° for each i €N. The
existence of such a sequence shows that Y € A(X,t)o-. Thus, A(X,t)

is regularly closed.

Now, suppose A is open. Then A' 1is closed and of type
(t2), so A'(X,t) is regularly closed, by the first part of the proof.
Then A(X,t)' (= A'(X,t)) is regularly closed, whence A(X,t) is

regularly open.

(v) _.Observe that, if Al’AZ C]Ra, then Al = A2 iff

Al(Y,E) - AZ(Y,E) for each (Y,%) G]R": this follows directly from

[v.21.1]. Now suppose A 1is closed. For each (Y,£) EIR", A(Y,8)
is regularly closed (by (iv)), so, using (i) and (iii), A°—(Y,E) =
A(Y,£)° = A(Y,£). The equality A°” = A follows from the observation

just made. The proof that A is regularly open whenever A is open

is quite similar, so we omit it. 0.
[V.25] PROPOSITION. Let ACR® be of 2ype (£2), XER>,

and t €ER. Then

(4) X € 3A(X,t) 44§ (X,t) € 34;

‘‘‘‘‘




e TNAT ST

(i) xE AX,0)° iff (X,t) € A°;
(Aid) X € A(X,t)” 444 (X,t) € A~;
(iv) X € Ax,t)' 4§ (X,t) € A™'.

P ROOF. These are immediate ffom [V.21.1) and the equalities
3MAX, )} = (ALK, 1), A(X,t)° = A%(X,t), A(X,t)” = A™(X,t), |

and A(X,t)” = AT'(X,t): cf., [V.24] and [V.19.i]. o.

We can give an alternate characterization of sets of type (t2):

[V.26] PROPOSITION. Let ACRY Then A 4s of type

3

(t2) 44§, whenever X E€R’ and t €R,

{3A}(X,t) € A%(X,t) "M '°(x,t)".

PROOF. Suppose A 1is of type (t2). Choose X em3, t €R.

Let Y € {3A}(X,t), so (Y, t- % rx(Y)) € 3A. Let ¢ > 0. We can

4

find (Zle’cie) and (2 ) €ERT with

25"2:

3 o
(zle'cle) € {BE(Y)*R}f\C_(X,t)ﬁA s

3 10
(Zges%,ye) € {B(RINC_(X, )47,

Clearly, Cle = t- -t- rx(Zle) and ;22 = t- ;1:- rx(ZZe)’ whence !

zle € B:(Y)PAO(X,t), 2ZE € B:(Y)M'O(X,t). Thus, each neighborhood

of Y meets A°(X,t) and A'°(x,c), giving YGAO(X,t)'I'\A'o(X,t)-.;

+0bserve that equality even holds in this case, for, by [V.24],
A%(X,£) Ok, 8)7 = A%T(X, 00407 (X, 1) € AT(X, M T(X,¢t) =
{ATA"T}H(X,t) = {3A}(X,t). Of course, we also have {3A}(X,t) = 3{A(X,t)}.
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:'.’.-: Conversely, suppose the inclusion holds whenever X € IR3,
t €R. Choose X € 1R3, t €R, and suppose Y GIR3 satisfies

- (Y, t=- 2 (V) € 3A. Then Y€ {3A}(X,t), so Y€ A°(X,0) W °(x,0).
~

% : 3 o

% Let ¢ > 0. Then we can find Z, € B_(DMA™(X,t), 2, €

Bg(y)nA'°(x,:). It follows easily that

S _1 3 o
~:§ (zle’ t- 2 rx(zle)) € {BE(Y)ﬂR}ﬁC_(X,ty\A R
- Z, , t-2r (2, )) € B ERINC (X, ) 4'°
X 2¢’ c X2 € - ’
e,
}: Therefore, A fulfills the requirements of [V.22]. O.
e
- Having [V.26], we can now show that Postulate [V.l.iv] yields
Ak
.': the following important result:
-
o (v.27) PROPOSITION. Let M be a moticn. Then the
¢ associated sets B and 2° are of type (er).
-~
3
N, PROOF. Since o° :=B', 1t suffices to show that B 1is of type
_ (t2). Choose X G]R3 and t €R. According to [V.26], we must prove
-;'.'_: that
e
o
g o - -
o) {3B}(X,t) CB (X,t) MB'(X,t) (1)
;f: (recall that B' 1is open). Suppose first that M is a null motion,
A
)
x’}‘\ so that B; = BO for each [ €ER, and B = BOXR. It is easy to see
Qg -
=L from [v.18.11i] that ]BO(X,t) = 38, since (IBO); = Bg for each r € IR.
»o Similarly, B'(X,t) = By, and {3B}(X,t) = 3B;. Thus,
v:;"
2 {3B}(X,t) = 3B, = B!~ = BOnB'~ & BO(X,t) TB'(X,t)”
"S‘j 9 0 0 0 0 0 [y Y v
L @
XX
e
l-‘::
A
N
Cn
L 4]
A
.Eg
’ ' ‘( Ny -‘.-'.r.r,,’f‘.-'. L LA e e T e T e e e S \'-:f‘ ...... G
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having used the fact that Bo is regularly closed. Thus, (1) holds

in this case.

Assume now that c* > 0. Suppose that 2 € {3B}(X,t), so

we have 2 € (3B) = 3B 1 . We shall first show that
t- < rx(Z) t- 2 rx(Z)

Z E'Bo(x,t)-: using [V.1l.1iv], choose ¢ € (0,2n(Z, t-‘% rx(Z))],

3

and let Pr /2" [-€/2, €/2] »R” be a continuous function such that

3 -0
pI,e/Z(;) € 35/2(2) NB 1 1 whenever lz] < e/2. (2)
_ t- 2 rx(Z)+ Sz

We define fI ¢! [~€/2, €/2] » R by
]

£, (0 = 'x(z)'rx(pr,c/z(;)) for lz] < e/2. (3)

Clearly, lfI’e(;)l < |Z-p1’c/2(c)|3 < €/2 1f |g]| < e/2, by (2), show-

ing that fI E([-e/Z, e/2]) C [-e/2, e€f2]. The continuity of fI
9 9

follows from that of Pr /2" Using a familiar fact, we can now assert

that fI ¢ Possesses a fixed point t* € [-e/2, e/2]. By (3), this
9’

number satisfies
_ x L _ *
g (@H* = vy oy (B,
so that

*) e B° - 8°

P €4
Le/2 t- ¢ rx(2)+ % ot % Ty (Pr /2™

-®) o
t- rx(pl,e/z(c ))

In vieﬁ of [v.18.11], the latter inclusion implies that Pr E/z(c"') lies

.~
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in B°(X,t). Thus,
Py, e/2(8%) € Bl T (%, 1) € BI(2YBO(%,1) .

We conclude that Bz(Z)nBO(X,t) # @ for all sufficiently small positive
€, so 2 EIBO(X,t)-. By using the other half of Postulate ([V.l.iv]

ix;x an analogous manner, one can show also that 2 € B'(X,t) .
Accordingly, (1) holds in all cases. With this, the proof is

complete. o.

We shall digress here briefly from the major line of develop-
ment, for the purpose of amplifying the remarks of [V.2.b]. Specifical-
ly, we intend to identify a condition which is at once reasonably weak,

easily verified, and implies [V.l.iv].

[v.28] DEFINITTION. A finite cone in R® is a set of the

form

B, (x )N{x A (y-x,) | y € By(x), A >0},

wherein h >0, &§ >0, and x, and x are points of R" with
|x-xv|n > &3 Xy is termed the ventex of the cone, h its height,

and sin 1(6/]x-xy| ) 1its vertex half-angle.  W.

[v.29] PROPOSITTION. Let ({BC} R, X) be an ordered

ZER’
uiple possessing the propernties deseribed 4in [Vv.1.1, ii, and 1ii]

and also satisiying the following condition:

[v.1l.iv]' 4§ c* > 0, zthen whenever 7 €R and Z € aBC
3

there exist mee cones CI(z,c) and Cz(z,;) in R

-

ot




YO
e

v , _
% with common vertex at Z, with vertex half-angles eI(z,c)
.. ) ) ) '
'. and eE(z,;), nespectively, satisfying
\) i 4
.‘:j sin 6°(Z,z) > c*/c for i=1 on E (1)
£ .
o and such that C'(z,c) € BY and C%(z,0) € By

:;:: Then the ondered trhiple also {ulfills the requinements of [v.l.iv],
L whence it belongs to M and generates a motion.

.ﬂ; PROOF. If c* = 0, then (V.l.iv] follows, as we have already
;: observed in [V.5.¢]). Now, suppose that c¢* > 0. Choose f € IR, then
RS

'? Z € ch, and let CI(Z,C) and CE(Z,;) denote finite cones in 3R3
>
Q}i as in [V.1l.iv]'. Let hI(Z,c) denote the height of CI(Z,c), and
Y ~

3 select ¢ € (0.-% hI(Z,C)]. Let Z denote the point of CI(Z,C)

» .

) which lies on the axis of this cone at distance IZ-ZI3 = ¢ from 2Z.
\

A Define pu: [~¢,e] ->]R3 by simply setting

Ny

7 .

= P (&) =2 for lel < e.

': We shall show that Z € B° 1 whenever |g] < €, whence it shall
> ¢+ 2

)

jh obviously follow that Pre fulfills the requirements of [V.l.iv].

- Because ¢ i.% hI(Z,c), it is easy to see that
fj

4

W -

g p> p. @ cclzo 8,
[-.! €+ sin 87(2Z,%)
L
e so Z€ 8%, with

) 14
tn! *

v dist (2,38)) > e+ sin 87(2,0) > e+ S, (2)
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the second inequality holding by (1). Now, recalling [V.12.i] (the
validity of which derives from [v.l.i, ii, and iii] alone, as one can

easily check), we find that

1

3 € B° whenever lel < E;-dist (z,ch),
c+ < &
c

which, with (2), implies the desired result

zeg° whenever lel < e.
4 S 2
c

Similarly, if we denote the height of CE(Z,;) by hE(Z,;), suppose
that ¢ € (0, % hE(Z,;)], and take Z to be the point of CE(Z,;)
lying on the axis of this cone with |Z-2|3 = ¢, we can again use (1)

to conclude that

zeB 1 whenever le] < e
t+ T &

Thus, the function £ pEE(E) :=Z on [~e,e] fulfills the require-
ments of [V.l.iv]. We have now shown that, if e¢* > 0, [V.l.iv]
holds with n(Z,z) = 1 oin {hI(Z,;), hE(Z,;)}, completing the

2
proof. a.

{v.30] REMARK. To carry the result of [Vv.29] over to the set-
ting i? which we shall later work exclusively, again let ({B;}ﬁﬂR’R’X)
be an ordered triple as in [V.1.i, ii, and iii], but now assume, in
place of [V.1.iv]', that 3Bc is a (2,3;1)-manifold for each 7 € R.
Then we can show that {[V.l.iv]', and so also [V.l.iv], is fulfilled,
implying that the triple belongs M. In fact, let  €R and Z € ch,

and choose any 8 € (0, 7/2): we shall show that there are finite
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cones Cl(z,z) € Bg and CE(Z,C) c 3&, each having vertex at Z and
vertex half-angle equal to 6. Then, if c¢* > 0, since c¢* < ¢, we
can surely select 6 so that sin 6 > c*/c, and so find cones
satisfying the requirements of [V.1l.iv]'. To verify the claim, we
note first that Bg is regularly open ([v.2.f]), so 3(82) = aBC,

and [I.2.29] asserts that Bz is 1l-regular. Thus, we can find a
positive p and a function ¢ € Cl(Bg(Z)) (each depending upon the I

particular [ €ER and Z € ch which were chosen) such that grad ¢

is non-vanishing in 82(2),

3 3 3 3
BB;ﬁBD(Z) = (Y€ Bp(Z)| ¢(Y) = 0}, )
and

B‘;’nng(z) = {Ye B:(Z)l oY) < 0} 1)

ol IS et

(with a corresponding equality describing BgﬂBz(Z)). Now, select a

number h € (0,p] such that

grad ¢(Z)|3 for Y€ BZ(Z). (2)

| grad ¢(¥) -grad ¢(z>|3 < cos 6

Writing v g (2) := v (2) = |grad 45(2)[-l grad ¢(2) (cf.,
o 3
4 a(Bc)
(I1.2.32.b]), for each ¥ € RN{z}' let ev(?) := cos 1 (|?-z|;1~

(i-Z)ovaB z)), 4.e., ev(i) € [0,7] and is the angle formed by
4

v (2) and (Y-Z). The set
aB;

ct(z,e) == (T € B@niz}'| o (D) € (n-6, 1}

T Te 1§ L'
..ﬁc‘ 'u' 'l’ o'ﬂ‘;

'
L4

is clearly a finite cone in IR? with vertex at Z, height h, and

1 | vertex half-angle 6; we now prove that CI(Z.;) c B?: for
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Y € CI(Z,E), we can use the mean-value theorem, (2), and the obvious

facts
cos ev(Y) < cos (m-8) = —cos 6 < 0

and ¢(Z) = 0 to write, for some Y, lying between Y and Z on the

straight line segment joining these points,

$(Y) = grad ¢(YZ) o (Y-2)
< grad ¢(Z) e(Y-2Z)+|grad o(Y,) -grad ¢(Z)|3-[Y-Z|3
= cos Gv(Y)'lgrad ¢(Z)|3°|Y-Z|3

+|grad ®(Y,) -grad ¢(Z)[3-]Y-Z|3

< {-cos 8 -|grad ¢(2)|, +|grad ¢(Y,) -grad ¢(z2)]|.}-!¥-z|
3 Z 3 3

< 0.

This implies that Y € Bz, in view of (1), completing the proof.

A similar line of reasoning reveals that the finite cone
E 3 3 ' >
C*(z,z) := {Y € By (2)N{z}'| o (¥) € [0,3)}

(with vertex at 2, height h, and vertex half-ﬁngle g8) lies in Bé.

We return now to examine further implications of [V.1l]. One

’ '.' W .. "
NN

of our principal goals is the study of the retardations of the sets

1a®s%s
N
LR

VR
ﬁﬁiﬁi'

%
LY

B and 9° associated with a motion M. Indispensable for this study

are the existence and properties of the family of "retardation functions"

generated by any motion, which we shall simply introduce here, intending

. S
AL

2

to provide later a more detailed exposition of their characteristics.
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(v.31] THEOREM. Let M be amotion, and (R,x) a nreference
pain for M. Conresponding to each P € 3R, X EIR3, and t €R,

there exists a unique non-negative number 1(P;X,t) with the property

r(X(P, t-T(FiX,0)) = cT(BiX,0).

PROOF. Fix P € 3R, X E]R3, and t €ER. Define an associated

function F: [0,=) + [0,») according to F(r1) := % rx(x(P, t-1))

for each 1 > 0. If L2 and T, are non-negative,
|F(r,)-F(1,)] <l| (P, t-1,)-x(P, t-1,)]| <c—*|1 -1, |
2 V2 IXUE, toT)=xtE, t=Ty )iy 20 117 0

whence it follows (since c¢* < ¢) that F 1is a contraction on (the
coﬁplete metric space) [0,=) into itself. Banach's contraction
mapping principle therefore yields the existence of a unique fixed point
t(P;X,t) for F, 4.e., a unique 7t(P;X,t) > 0 for which

F(1(P;X,t)) = t(P;X,t). This is just the assertion of the theorem. a.

We can now supply a catalogue of properties of the sets IB(X,t)

and n"(x,:), for XEIR3, t €ER, associated with a motion M.

3

[V.32] THEOREM. Llet M be a motion. Choose X E€ER and

t €ER.
(4) B(X,t) 44 non-vodid, compact, and nregularly closed;

(L) % (x,t) =B(X,t)'; a%(x,t) 4s non-void and regularnly

open;

3 .
(<) aB(X,t)} = {aB}(X,t) = UCio {ch;(X)naBt-;},




_'_'.~_ ; ° _gr° - 3 o .
= (4v]  B(X,t) =B (X,t) Yis0 {aB_ ()8, _ Y
L (v 2%, 0)" = 2°7(x,€) = U {3B> (X)rB!”.};
—a ’ ’ >0 cg t-g”’
5
;:?.j ) (vi) X €B(X,t) iff X€3; Xe (x,t)  i4f X€B!;
.r.:.:
lvid) X €e€B(X,t)° iff x€ B:;
ﬁ-"ﬁ
=4

"“‘ r s e I3
_:3-’: (viid) X € aB(X,t) 4ff X € 3B_;

g2
- (ix)  B(X,t) and 0%(X,t) are intrinsic to M.
o
S-f_:._i PROOF. (i) Let (R,x) be a reference pair for M. Choose any
-\.";.
ke P € 3R, and let <t(P;X,t) be as in [V.31]. Then
'\’

S

e X(P, t=T(P;iX,t)) € B, __(p.x 1) " Beor(p;x,t)

.\"

1
¢ -Bt-— i, (x(P, t-1(P;X,t)));
'_‘_’_-. c °’X » sy s
o
-.::: with [Vv.18.1ii], it clearly follows that x(P, t-t(P;X,t)) € B(X,t).
\ Al

L

Consequently, we have shown that B(X,t) ¥ #. Next, since B is closed,

J:: B(X,t) is regularly closed, by [V.24.iv]. We must show then that
r;‘\L
3-.,\ B(X,t) is bounded. For this, note that, since Bt is bounded, there
o 3 3
": is some sq > 0 for which BEs(Bt) c Bcs(x) whenever s > 843 here,
.’I -~

¢ has been chosen in (c*,c). In fact, we can take

2 .l

o o alr: {dist (x,B,) +diam B},
::'{ since then, s > 84 implies c¢s > ¢s +dist (X’Bc) +diam Bt’ and,
L I'\

~._. 3
\ﬂ:: supposing that Y € Bés(Bt)’ we find, using (I.1.4.1),

~

L

XN
sj:

2
l.:‘

X 4
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Py I

Y
LA

o

rX(Y) < dist (Y’Bt) +dist (X’Bt) +diam Bt < cs.

‘.J..;i'-
o

Thus, Y € st(x) whenever Y € Bgs(Bt) and s > s verifying the

0’
assertion. Now, according to [V.11l.i], Bt-s c Bgs(Bt) if s > 0.

3 3
Consequently, if s > sy Wwe have Bt-s C BEs(Bt) C BCS(X), implying
that 3B (X)NB___ =@ for s >s,. Finally, use of [V.18.111]

yields

3
B(X,t) = Us_>_0 {oB_ (x¥B,_ } = usio {oB_ (X)nB___}

3 3 -
{aB_ (X)MB,_ .} < Bcso(X) s

LJ0_<_s:s0

so B(X,t) 1is bounded.

(11) since -@° =B', [V.19.1] shows that °(X,t) =
B'(X,t) = B(X,t)'. The boundedness of B(X,t) shows that QG(X,t) £ 0,
while th'e conclusion that Qc (X,t) 1is regularly open follows from
either [V.24.iv] (since 0° 1is open) or the fact that B(X,t). is

regularly closed.

(114), (dv), (v) All of (i1i) and the first equalities in (iv)
and (v) are immediate from (V.24.i, 11, iii), since B and q° are
of type (t2) ([V.27]). The equalities GBO)C = BZ, (Qo-); = Ba-.
for each { €R, follow from [V.15.ii]; using these in conjunction

with [V.18.111] produces the second equalities in (iv) and (V).

(vi) By [V.21.1], X € B(X,t) iff (X,t) €B, J{.e., 1iff

X€B_=B. Thus, XE€ 0%(x,t) =B(X,t)' iff X€ B).

'i (vii) This follows from (iv). Alternately, since B 1is of
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type (t2), X €B(X,t)° iff x €BO(X,t), 4iff (X,t) €B®, iff

xe @), ~ 8.

(viii) This statement follows just as that in (vii) (the

equality (BB)t = 3B 1is implied by [V.15.1i1]).

t

(1x) Recall that the positions BC’ g €ER, are intrinsic

: 3 o
to M. Since B(x,t) 'Uc>0-{33c;(xmsc-c} and @ (X,t)

3 g
U L
t>0 {3Bc;(X)”3t-¢} it is clear that B(X,t) and & (X,t) are

" intrinsic to M. 0.

[v.33] REMARK. Let M be a null motion. In this case, all

of the retardations of B and Qc, which are now cylinders, are
easily described. 1In fact, BC = B; = BO’ and Qg = Bé = B,

for each §{ €R. From either [V.18.i1i] or [V.18.ii1i], it is then

clear that B(X,t) = Bo and sz°(x,:) = 86, for every choice of

X EIRS, -t ER. In view of this, the statements of the just-proven
Theorem [V.32] are reduced to trivialities in the case of a null motion.
The retardation functions acquire a particularly simple form in this
instance, as well. For example, taking the reference pair (Bo,x°)

for M, where x°(-,Z): 380 - 380 is the identity for each 7 €R,
it 1s obvious that the corresponding retardation function, t°, is
given by to(P;x,t) = % rx(P), for each P € aBo, X em3, t €R.

It turns out that these circumstances allow an investigation of scatter-

ing by stationary bodies which is, in all senses, simpler than the

analysis required in the case of a non-null motion.

A mam m e
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[v.34] REMARK. It was noted that a knowledge of the properties
of the retardation functions associated with a motion is essential for
the constructions to be undertaken later. We begin here with a

description of the characteristics of these functions.

Recall, then, that if M 1is a motion, with any reference pair
(R,x) for M there is associated via [V.31] a unique "retardation"

+
function T: aﬁ&n?na + [0,x), defined implicitly by the requirement

ry(x(P, t=1(P;X,t))) = c1(P;X,t),
3 (1
for each P € 3R, XER", t €ER.

Suppose that we think of the points of 3R as "the particles" com-
prising the surface of the moving body at each instant: the path traced
by the particle P € 3R is described by the function x(P,+):
R *R3. Choose X E]R3, t €R, and suppose that a spherical wave-
front emanates from X at time t, travelling with speed c¢. Let P
retrace all its previous positions in reverse order, starting from
x(P,t) at time t (L.e., "run the movie film backward, at the same
speed”"). Then <t(P;X,t) 1is the duration of time required for the

spherical wave to intercept the particle, overtaking it at the position

x(P, t-T(P;X,t)).

We might note that Tt itself is not intrinsic to M, but

each range {t(P;X,t)| P € 3R}, for X€1R3, t €R, is an intrinsic

+

The notation "1" omits any indication of the dependence on the
particular reference pair with which it is associated; this should
cause no confusion.
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object.

(: [v.35] PROPOSITION. Let M beamtion, (R,x) a ref-
erence pain for M, and «: aRxR3xn -+ [0,=) Zthe associated retarda-
S tion function.

I .

S (£) t(P;X,t) = 0 4or some P € 3R, xER3, tE€R 444

h{s X = x(P,t);

(L) T 48 continuous;

3

e (did) 44 x: ORxR + R~ 48 continuous Lin {ts §inst argument,

uniformby in its second, then =t L& uniformly

Y
.

continuous;

NN

s,

2y -

(dv]  forn each fixed P € 3R, 1t(P,+,) L& Lipschitz continu-

( ous on R®, unifoamly in P; in fact, if

4
(xl’tl), (xzitz) ER 1

-,

A 1
‘ lT(P;Xz.tz)-r(P;xl.tl)l By {Ixz-x1|3+c*|:2-:1|}. )

2 PROOF. (i) Let PE 3R, XERS, tER. If t(P;X,t) =0,
b

\;.2 then tx(x(l’,t)) =0, 4{.e., X = x(P,t). Conversely, if X =
X(P,t), then T = 0 1is a solution of the equatiom rx(X(P,t-?)) = cT.
o Since 1(P;X,t) 4is the unique solution of this equation, we must

s L have Tt(P;X,t) = 0.

€ 3R, xiem:’, and t

LA -

4

(11) Suppose P €R, for

i i

i =1,2: then

{ QX

Y

25y

X

45

T G A S e R A T B e S e S T




IT(PZ;Xz,tz)-T(Pl;Xl.tl)l

1
=< Irxz(x(Pz,tz-r(PZ;XZ,tz)))-rxl(x(Pl,tl-r (Pl;xl,tl)))l

< % lrxz(X(Pz'Fz'T (Pz;xz,tz)))—rxz(x(Pl,tl-r (P13X;5£0)0)) |

1
+T |rxz(X(Pl,tl-T(Pl;Xl.tl)))-rxl(x(Pl,tl—T(Pl;Xl,tl)))l

(o] [

<

. . ix-

<

nj=

+ 3 |x(P, .t -t (P, Xt ) ~x (Pt =t (P X, ,e.0) |+ 2 [X,-X, |
c A WS L RS CEARALS EAS TLACS RRS EASRRAE Ml RSt SH Y

<

0|l

|x(Pz',tl-r(Pl;xl,tl))-—x(Pl,tl-r(Pl;Xl,tl))|3
+ & {|t~t, |+]T(P,;X,,t.)~1(P;X,,t )|}+l [x,-x. |
c "% 2%ty 1350 c %Xl
from which we find
IT(PZ;Xz,tZ)-T(Pl;Xl,tl)[
2 ;f—cf {|x(Pz.tl-r(Pl;xl,tl))-x(Pl.tl-r(Pl;Xl,tl)) I3 (2)
XXy | g™l ey 1D

Since the function P i+ x(P,tl-t(Pl;Xl,tl)) is continuous on 3R,
the continuity of 1 at (Pl,xl,tl) follows from the latter inequality.

Thus, Tt 1is continuous.

(ii1) The hypothesis here is, more specifically: given

PE€ 3R and € > 0, there 1s a 6(P,e) > 0 for which

...............
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. |X(Q.C)-X(P.C)|3 < ¢ whenever Q€ amBG(P,e)(P) and 7 €ER. From

the compactness of 23R, it follows easily that x is then uniformly

continuous in its first argument, uniformly in its second: given

€ >0, there is a §_ > 0 such that |x(P2,c)-x(P1,c)]3 < & whenever
€ -

Pl’PZ 3R with |P2 P1|3 <6, and [ €R. In view of inequality

(2), the uniform continuity of <t follows.

Note that if x 1is uniformly continuous on 3RxR, then it

satisfies the hypothesis of (iii).

(iv) Set P, =P

1 2 = P in (2) to obtain (1). Then

{1+(c*) 2}1/2
c-c¥*

| T(P;xy, t5)-T(Rs5X e ) | < | (Xt )-(Xp5t )l (3)

4.e., T(P3*,°) 4s Lipschitz continuous on Rl‘, uniformly in

P € 2R. o.

In the following definition, we introduce the notion of the

"retardation" of a function defined on a subset of m“, with respect

to a point in IRI’; we do this in two settings.

[v.3)] DEFINITIONS. (1) Let A ClRl‘ be non-void, and

3

f be any function on A. Let X€R” and t €R. If A(X,t) ¥ 0@,

then we define the retardation of £ with nespect to (X,t) to be

the function fo(P A(X,t)), on A(X,t), and denote it by

(X.t)I
[f][x,:]' Thus, [f][x,t] is given on A(X,t) by

(£) (g, = £(Py ) (D) = £(¥, ¢= -‘1; 1, (1), for Y€ AXt). (1)

x,t

\
1
)
1
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Since Y € A(X,t) iff P

(X,t)(Y) € A, it is clear tha; [f][x‘tl
3

is well-defined, and is defined on A(X,t) CR~.

(ii) Let M be a motionm, (R,x). a reference pair for M,
and 1 the retardation function genérated by (R,X). Suppose f
is a function on 3RR. If X G]RB, ¢ €R, the netandation of f
with nespect to (x,t)* is defined to be the function [f](x,:) on

R which is given by

[f](x,t)(P) = f(P, t—T(P;x,t))’ for P € 3R. u. (2)

[v.37] REMARKS. (a) With notation as in [v.36.1i], let A be
of type (t2). We wish to emphasize the fact that the location of X
itself relative to the domain of [£f] (X,t]’ A(X,t), depends upon the
situation of (X,t)- relative to A: that is, X € A(X,t) 1iff

(X,t) €A, X€AX,t)° 1ff (X,t) € A°, X € 3A(X,t) 1ff (X,t) € 34,

ete., because of [V.21.1] and [V.25].

(b) Let M be a motion, and suppose f is defined on one of
the sets B, Bo, Qa, or 0B, with values in r". Suppose XE]R3,
t € R. Then, as the case may be, [f][x,t] is defined on B(X,t),
B°(x,t), 92°(X,t), or 3B(X,t), with values in R". These will be
the situations of most frequent interest. We emphasize that the

domain of [f] (X,t] is a subset of ]R3.

+A1though the same terminology is used in both settings (i) and (ii),
no confusion should arise, since different symbols are employed in the
two cases.
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(c) Let M, (R,x), and 1t have their usual meanings. Then

3

x: ORR -+ R”, so [)(](x t): aR +R3 is defined by [v.36.ii],

vhenever X € 1R3, t €ER. Explicitly,

["](x,:)(P) = x(P, t-1(P;X,t)), for P € 3R, xem3, t €ER. (1)

Consequently, the condition defining <t, (V.34.1), can be rewritten

. 3
rxo IX](X,t) (P) cet(P;X,t), for P € 3R, XER", t €ER. (2)
(d) On occasion, it will be convenient to employ the notation
[£]1(P;X,t) for either [f] [X,t](P) as in [V.36.i] or [f](x,t) (P)
as in [v.36.11]. Due regard for the context should suffice to clarify

the meaning in any situation.

(e) The question of continuity of any of these retarded
functions is certainly easily settled. With notation as in [v.36.i],
if £: A->R" is continuous, then [f] [x t]= A(X,t) »R® is

»

continuous, since P is continuous. With notation as in

(X,t)

[v.36.41], 1f f£: 3RR +R® is continuous, then [f.](x t): 3R + R"
9

is continuous, being the composition of f with the continuous map

Pw (P, t-1(P;X,t)) on 3R into 3RIR (the continuity of <t(+;X,t)

following from [V.35]).
The following fact is fundamental.

(v.38] PROPOSITION. Let M beamotion, (R,X) a

refenence pain for M, and 1t the associated retardation function.

.
¢
i
!
1
q
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o 3 3 4 ' |
- let XE€ER’, t€R, Then [x](x ¢y} OR=R™ s a homeomonphism ¢f |
~.* ’ |
D 9R ocntoe 3B(X,t). |
,.\_ PROOF. X: 3RR *R3 is continuous, so the continuity of
-:::’ [x](x t) follows, as a special case of the results of [V.37.e]. Now,
",.'
Y
€ =
l suppose P, P, 3R, and IXJ(X,t) (?)) IX](x,t) (Pz). From
N-
h:';. (v.35.2), we find that t(Pl;X,t) = t(Pz;X,t); denoting the common 1
* 1
‘-f- value by 1, then x(Pl,t-‘?) = x(Pz,t-%). Since x(*,t=-1) is 1
‘.'
= 3 3 I
injective, we conclude that Pl P2. Thus, [X](X,t) is an injection. .
. !
W !
;- Next, we show that [x](X )(aR) = 3B(X,t): recall ([Vv.32.iii]) .
o ¢ ;
that aB(X,t) (:=3{B(X,t)} = {aB}(X,t)) =V 250 {aB (x)naB } |
B so Y €3B(X,t) 1iff Y € BBcC(X)-’\aBt_; for some 7 > 0, whence it ]
- i
‘. is clear that Y € 3B(X,t) iff Y € 3B 1 . But, whenever
. - - 4
t- 3 rx(Y)
e = - 14 =
! PE R, Ixlg,ey(® = x(P, t-1(PsX,¢)) € 3B, (P;:X,t)
R
o .
- 9B 1 , 8O [X](X,t)(P) € 3B(X,t) for each P &€ 3R.
< t- 2 rx(["](x,:)(P))
,
On the other hand, suppose that Y € 3B(X,t). Then Y € 3B 1 =
N t- < r (Y)
) c X
J‘.: X(3R, t-=r (Y)), so Y= x(PY, t- =1 (Y)) for some P € 3R.
'Q
g 1
o Obviously then, ¢ < rx(Y) rx(x(PY, - 2 rx(Y))), from which we 1
] 1
N infer that : rx(Y) = r(PY;X,t). Finally, Y = x(Py, t-r(PY;X,t)) =
\I
! (.e. € .
i IXJ(x,t)(PY)’ {Le., Y [X](X,t) (3R). These facts show that :
[x](x’t)(aR) = 3B(X,t), as claimed. }
'.: Gathering the results to this point, it has been shown that :

[)(](x £) is a continuous bijection of 3R onto O3B(X,t). But the
9’

r
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e compactness of 9R (and the fact that 3B(X,t) is Hausdorff, of

- course) implies the continuity of [x]"1 : 3dB(X,t) -+ 9R. This |
(x,t) _

X completes the proof. o.

" [v.39] NOTATTION. Recall that, for ;[ €R, we write x;]':

ch + 3R for the inverse of the homeomorphism Xg = x(*,C) taking

:-’E 2R onto 3BC, whenever M is a motion and (R,x) 1s a reference
\ pair for M. Now we know that 3B = Uz;>0 {BBCX{C}}, so Corollary
.' [v.8] states that (Z,3) le(z) is continuous from 9B onto 3R;
3 : since this map is defined on 9B, its retardation with respect to
f“ , any (X,t) em" is defined, as in [V.36.i], as a functicn on

dB(X,t). 1In keeping with the notation already introduced, we shall use

e .
0
.

the symbol [x-]'] [X,t] for this retardation. Thus,

R

[x'll (M = x1 Y, for each Y € 3B(X,t).
{ [xa t] t- l r (Y)
.r._‘. ¢c X
-~ We can identify this as the inverse of the homeomorphism [x](x &)
o : ’
N of 3R onto 3B(X,t); this is the essential content of the next
S observation.
..:_.n
‘i:sd
v [v.40] PROPOSITION. Let M be amotion, (R,X) a reference

pair fon M, and 1 zhe associated netardation function. Let
3

v
N N P‘u’(-

% SO

X€EMR’ and t €R. Then

v

v
D

A

€)X g = g s 9

o (i) t(xt (1);X,8) =< £ (D),
0y t- %rx(Y) ¢ X

L.e.

» ..l-'o . '.l '- "n 'q_
. Q.- XYY NN a
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L 1
X .
C:-': 'L'([)(]-1 (Y);:X,t) = 1, (Y) for each Y € aB(X,t) (2) 1
o (X,t) 3% c X7 Sotle h
Fot
Pod ?
g PROOF. Let Y E€23B(X,t). Then PY 1= [x]'('g'( £) (Y) 4is the unique :
3 ’ -
- oint of 3R for which Y = P.,) = x(P,, t-t(P.,;X,t
P [x](x, ey (Py) = x(Py (PyiX,t)), so
. _—— . Y - .

Py xt-r(PY;x,t)(Y)' Since T(Py;X,t) = T ry(X(Py, t-T(Py;X,t))),

1 -1
we find that r(PY;X,t) - rx(Y), whence Py = X (Y) =

1
t- = r (Y)
c X
[)(.1][x ¢] (Y). This gives the first statement of (ii), and also shows
} ]

that [x]E;’t)(Y) = [x-ll [X,t](Y) for each Y € 3B(X,t), so [x ][X,t]

-1 ~1
is an tensi f . Si the d i f is
an extension o IX](X,t) nce the domain o [x ][X,t]
also 9B(X,t), the equality in (i) follows. The second statement in

(11) is then an immediate consequence. o.

The retardation facts also enable us to make an assertion con-
cerning the intersection of any backward characteristic cone with 3B,

for any motion M.

[v.41] PROPOSITION. Let M beamotion, (R,x) a

nefernence pain fon M, and t the associated retardation function.

3

let X€R’, t€R. Then the map [x*“](x £)?

M) (g gy ®) = ([X) g ) (®), E-T(R3X,0)), P € 3R,

‘.

provides a homeomorphism of 3R onto BC_(X,t). /

L
PROOF. It is a simple matter to check that P | aB(X,t) is !4
(x,t) tn
a homeomorphism of dB(X,t) onto 3BYC_(X,t). In fact, P(X £) is
’

a continuous injection of ]R3 onto C_(X,t), so P(X t)l dB(X,t) -
] T




-61-

L

‘z: is a continuous injection of 3B(X,t) into C_(X,t). But, if

a .
po-t € € = -1 €
. Z € 3B(X,t), then Z € 3B 1 , SO P(X,t) (2) @z, t < rx(Z))
(: t- = r _(2)

c X

,. UCER {3B;X{C}} = 3B, so the function is into 3B"C_(X,t). If

o (Z,2) € 3BC_(X,t), then Z € 3B, and ¢ = t- 21, (2), so Z€

< . 1

B ’ .e. € . = - = =

. 9 . 1 _ (z), L.e., Z € 3B(X,t). Since P(x’t)(z) z, t . rx(Z))
o c X

<\‘

- (2,5), we can conclude that P(X t)l 3B(X,t) 1is a continuous

-'~ 9’
> bijection of dB(X,t) onto 3BC_(X,t). The inverse of this function
\

13 is just Pr| 3BC_(X,t), which is continuous.

£

= Thus, (Pry oyl IBXLENOIX] (g (32 3R > 3BUA_(X,1) is a

A homeomorphism, in view of [V.38]. Since, for each P € 3R,

i )

) Pex, eyl BEENOIXT (y B = ([x) g ) (B, t= 2 T (Ix] g ) (PI))
= ([X](x,c)(P)’ t-1(P;X,t)),

3

J_:'_-: the proof is complete. .

oo

LY
- K

Note that, for any motion M, the sets 38; (; €ER),

i ol
LIS
. >

aB(X,t), and 3BC_(X,t) ((X,t) G]Rl‘) are pairwise homeomorphic; in

N

(.\ turn, each is homeomorphic to 3R, where R is any reference set
‘

-t

e for M. Also, we have shown that 3B is homeomorphic to any 3R<R.

N

Y

‘..J

Under the assumption that a reference function possess a

R,

certain number of continuous derivatives with respect to its fourth

. argument, the corresponding retardation function possesses a correspond-
SO
»y ing number of continuous partial derivatives with respect to its second
) .:-’.
- set of arguments. More precisely:
o
,.0?
O
ood
o
-
oy ¢
o
0
.'.:'
L
e . - - s+ e e e e P - - - - - . “ . - - . - - . -
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2 i
;‘_:‘, [V.42) PROPOSITION. Let M beamotion, (R,x) a rneference

i pain for M, and T zthe associated netardation function. |
.‘Z\ (£)  Suppose, for some P € 3R, x(P,+) € ckaR;]R3), whene ]
o

k €MU(=}. Then t(P;-,) € CE@®*{(x(P,2),0)| ¢ €R}').

Moreover, whenever (X,t) em"ﬁ{(x(P,c),r;)l ; €ER}',

4

L.e., whenever (X,t) €ER and X # x(P,t), then

c

B SECTAOORE A

. . |
r, ,([x] (®))-Ix,,] (P) )

15, (BiX,t) = —Hud (K0) &8 w q

) }

Ny d
A 1-t: (PiX.t) = 1 - ~
d‘~ *% 95y c ’ #

L
ey (O ig oy BN 1x,] g gy B

: - c
T3, (P:X%,t) = {1‘T;4(P‘x’t)}'{rx,z([X](x,;) (P))°[x9.’4](x’t)(P)}. (3)

and

- . - - _1. -T ¢ » . -
Tli(P’x’t) c {1 Tsa(Psx’t)} rx,i([x}(x,t)(P))’ i 1,2,3. (4)

I§ k>1 [k =], zthen each partial derivative of
1(P;+,°) of order > 1 and < k [of any order] can
be computed in m“nx*(P,R) ' by successive differentia-
tion of (1) and (4).

APPSR - WL SR S U IR

(i) Suppose sz € C(aRxR;R3) gor j=1,...,k, fon some
k€N [fon each 3 €EN]. 1§ the degree of the multi- -
index a = (°1"“’°‘1o) 4 <k [for any a), zhen

T | aRx{BU°} € c(arx(BVUR}).




: ‘4
-~ 4
1
\ o |
-'_: Before presenting the proof, we remark that (1) and (4) are
' 1
2 )
-' simply the results which would be obtained by formal implicit differen- o
7 " tiation of (V.34.1), implicitly defining 7t. Indeed, a very short
(‘: proof can be constructed by first invoking the implicit function
SR ;
theorem to show that 1T possesses the requisite derivatives, then J
N effecting the implicit differentiation of (V.34.1) (cf., the proof ]
) :
:J of [V.47.v]). However, we choose to follow a more instructive (albeit ;
\‘.l L
O much longer) method of proof which provides practice in manipulating T. ‘
A
) PROOF. (i) PEOdRis fixed, with x(P,*) € C\@®,RD). It is )
-.‘( L
}-:: easy to see that {(x(P,z),z)| ¢ €R} 1is a closed subset of ]Ra,
s since the continuity of x(P,*) on IR implies that the limit of any
f .
N _
{::'_' convergent sequence in the set must also be in the set. Thus, :
PN 4
x {(x(P,2),2)| % €R}' 1is open in R'. Choose (X,t) € {(x(P,z2),2)]
¢ Z €R}'. Then X % x(P,t), so 7(P;X,t) >0, by [V.35.i]. Then [
‘.‘::: d := rx(x(P, t-t(P;X,t))) = ct(P;X,t) >0, L.e., X ¢ x(P, t-t(P;X,t)). l
)
N According to (V.35.1), we have
~ d o ec=c*
| T(P; X, t+h)~T(P;X,t) | < 32 vhenever [n; - Foow 4 (5)
N c cc
Tag
:::-' Now, we claim that if |h| < min d | &=t d then X does not lie ]
'1-' ’ 2c ’ ZCC* * 1
." on the closed line segment joining x(P, t-1t(P;X,t)) and
_.:j x(P,t+h-1(P;X,t+h)) (this line segment may be degenerate, consisting
TN ‘
:-::: of the single point x(P,t-t(P;X,t)); in that case, we already know |
a,
the claim to be true). To see this, assume the contrary: for some
~ ‘
o d c-c* )
2\: h€R with |h| < min {E ' Tk d}, there exists X € [0,1] such :
. 3
oo that 1
v ]
¢ i
'\ <
1
..‘ 1
\" ‘
.‘. 1
X'¢ \
\..4 a
Q 1
<
! 1
s
AT A AT ARl e AT AT A g o, e e L T e L A )




> eu-
'.“f- X = x(P,t=1(P;X,t))+A {x (P, t+h-1(P; X, t+h) ) =x (P, t-1(P;X,t)) }.

. Then

d < Ac*|h-{1(P;X,t+h)~1(P;X,t) }]

< c*{|h|+|1(P;X,t+h)-1(P;X,t) |}

N *
7 _c*{-d—+d—}-§—d<d.

A

A

2¢c 2c

Y]

This impossibility proves the claim.

d c-c*
Suppose then that 0 < |h| < min {EE ' ok

fact just proven, we can apply the mean-value theorem to the function

d}. Because of the

‘:':,
Ef
4
4

2

E

Ty in the following manner:

% {1(P;X,t+h) -1(P;X,t) }

- -11; {rx(x(P,t+h-r(P;x,t-*h)))-rx(x(P.t-T(P;X.t)))}

= il:c? 1'x,fc(’fh)'{’<£(I"'"‘”“T(1’;Xst'*h))-xl(l’.t-r(P;X,t)) },

where Yh is some point on the line segment joining the points
x(P,t-1(P;X,t)) and x(P,t+h-t(P;X,t+h)). Again applying the mean-
value theorem, this time to each of the coordinate functions xl €
C10R), {=1,2,3, we can assert that there exist ¢

h
in the open interval with endpoints t-t(P;X,t) and t+h-1(P;X,t+h)

€ER, £ =1,2,3,

(which cannot be equal, for then we should have, from above, 7t(P;X,t) = ) o
t(P;X,t+h), giving h = 0, contrary to our assumption) such that’ g
N

c .

+ .
‘We write X%A i= %-x%a; cf., [Vv.43.c], 4nfta.
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% {t(P;X,t+h)-t(P;X,t)}

rua

(Yh) X,a(P th) {h {T(P X, t+h)"T(P X, t)}},

we. have abused the summation convention on the right-hand side here,
but the meaning should be clear: sumon £ over {1,2,3}. A rearrange-

ment of the latter equality produces

c
{1+rx,2(Yh)~x%4(P,t§)}- % {t(P;X,t+h) -1 (P;X,t)}
(6)

(o

€ 4
Tx,2 () %0, (o 5)

c~c*
whenever 0 < |h| < min 4 s dl For no such h can we have
c 2c * 2cc*

Ty Q(Yh)°x§4(P,t§) = -1, by the very fact that equality (6) holds for
»
each such h; thus, (6) determines the difference quotient appearing

in its left-hand side, for each such h. Now,
th'X(P9t‘T(P;x,t))I3 i lX(P:t+h’T(P;x)t"'h))-X(P:t'T(P;xyt)) |39
and

|h-{1(P;X,t+h)-T(P;X,t) }|

iA

| ef~{e~t(2;%, 00}

|n|+]t(P;X, t+h)-1(P;X,t) |, L =1,2,3,

iA

for these same h, whence the continuity of t(P;X,:) and x(P,°)

shows that 1lim Y, = x(P,t-1(P;X,t)), lim t2 = t-1(P;X,t),

hs0o h+o O
2 = 1,2,3, The continuity of X’A(P’°) gives, in turn,

Lin  x7,(B,t]) = x7,(P,t-1(PiX,1)), & = 1,2,3. Since we showed that
s h 4

Y, $# X for all h in question, and X ¥ x(P,t-7(P;X,t)), we also

...........

...............
......
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see that hlimo rx’l(Yh) = rx’g(X(P’t‘T(P;X,t))). 2 =1,2,3.

! Finally, we show that 1+rx’z(x(P,t-r(P;X,;)))-x%:(P,t-T(P;X,t)) ¥ 0:
S ' first, observe that (V.1.1) implies the validity of the inequality
lX’a(P’§)|3 < c*, for each f €R, while |grad rx(Y)|3 = 1 whenever
Y # X. Then the Cauchy-Schwarz inequality yields

c

l+tX, Q(X(P’t-T (P3X,t))) 'X%4(Pst‘T (P;X,t))

c
1—|rx’2(x(P,t-r(P;X,t)))'x%Q(P.t-r(P;X.t)) l )

v

*
1- £ 5 o.
c

iv

Upon computing the difference quotient % {t(P;X,t+h)-1(P;X,t)} from

(6) and employing these facts to allow h -+ 0, it is found that

r;A(P;X,t) exists and is given by the expression appearing in (1).
Obviously, (2) and (3) are immediate consequences of (1).

The proof of (4) is similar to that of (1). Choose i € {1,2,3}.

For h E€R, let hi = he§3). Again by (v.35.1),
d c=-c*
]T(P;X+hi,t)-t(P;X,t)| << whenever |n| < d,
-k
and from this we deduce, as before, that if |h| < €°C” 4, then X

c

does not lie on the (possibly degenerate) closed line segment joining

x(P,t-T(P;X+hi,t)) and x(P,t-t(P;X,t)). Next, observe that the

function (Y,2) v Y-x(P,t-t(P;Z,t)) 1is continuous on 'RQXR3 and is

o
:l
1
o

non-zero at (X,X) (recall that X # x(P,t-t1(P;X,t))). HKence, there

is some &§ > 0 for which IY-x(P,t-T(P;Z,t))l3 > 0 whenever

- - - 1. l. - o - W - - -
S SRR Y T PRI P Y
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Y,Z € BG(X)’ Supposing that Ihl < 8, this statement is true when

Y 1is any point on the closed line segment joining X and X+hi,
and Z = x+hi. That is, if |h| < &, then x(P,’t-T(P;X+hi,t))

does not lie on the closed line segment joining X and X+hi. We

use these observations to justify two applications of the mean-value

theorem to the distance function in the following computation; as ‘
|

before, we also apply the mean-value theorem to each xz(P,-),

—ck
2 =1,2,3: suppose that 0 < |h| < min {ccc d, 6}. Then

% {T(P;x+hi.t)-r(P;X,t)}
1
=t {rx+hi(x(P.t-r(P;X+h;.t)))-rx(x(P,t-r(P;X+hi,t)))}
+ i (r (x(P,t=1(P3%+h ,£)))-r, (x(P, t=T(P;X,6))))
-1
[

rx(P,t-r(P;X+hi,t)).~i (xh)

3= Ty 2 L Er s hy 0 X (B et (25X, 00))

TX(P,t-1(P;X+h,,£)) 04 (X))

1 2¢ _ .2 . .
h ’x,z(zh) x,a(P,th)°{T(P,X+hi,t)-T(P:th)},

where Xh is some point on the line segment joining X and x+hi,

2h is on the line segment joining x(P,t-t(P;X,t)) and

x(P,t-T(P;X+hi,t)), and the Ez €R, 2 =1,2,3, are in the open

h
interval with endpoints t-r(P;X+hi,t) and t-t(P;X,t), 4if the latter

are distinct; {f these two numbers are equal, we choose, as we may,

~R c-c*
t, = t-1(P;X,t). We find, for 0 < |h| < min { — d, 5},

o
VALY

LY
»

3
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(e @30 (B, D) F (1B 3h, D-1(RiK, 1))

(8)
- - % rxh’i(x(P,t-T(P;X+hi,t)))-

Reasoning as in the proof of (1), it is easy to show that

lim Xh = X, lim Zh = x(P,t=-1(P;X,t)), lim Eﬁ = t-7(P;X,t),
h+0 h-+0 h=+0

2 2
Ln & B = xb, (B t-t(ix,0), 1n Ty o2 =

h-+20 h->0

ry (x(P,t=t(P;X,t)), for & = 1,2,3, and 1lim r (x(P,t-
9

h-0 xh’i
T(P;X+hi,t))) = rx’i(x(P,t-T(P;x,t))); for the latter two results,
we use the fact that X ¥ x(P,t-t(P;X,t)). Then, recalling (7), we
must note that

ln (4, 2 xh D) > 1- €5 0
h -+ o X,R. h ,4 ? h bt [ ’

' -k
8o there is some n € [0, min {EES- d, 6}] for which

I Y 1 c*
1+rx,2(2h) Xy, (BaEy) > 5 [1- E—J > 0 whenever 0 < |h| < n. For these
h, the difference quotient %-{t(P;X+hi,t)-r(P;X,t)} can be computed
from (8). Carrying this out and using the facts cited above, we can

let h > 0 and obtain

- % ry, 1 (X (P, t=1(P;X, 1))

(P;X,t) = ; 9

-
'y c
4y, (X(P,t=T(R3X,8))) Xy, (P, t-1(P; X, 1))

in view of (2), (9) is just (4).

We have shown that T;i(P;','), i=1,2,3, and T;é(P;"')

exist on {(x(P,3),z)| & €R}'. From their explicit expressions
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~

appearing in (1) and (4) (or (9)), the continuity of these functions is
obvious. Again from these expressions, it is equally obvious that,

if k> 2, (P;+,*, and 1;41(P;-,-) exist on {(x(P,Z),q)]|

iy
£ €ER}' and are continuous there, whenever 1,j € {1,2,3,4}. Indeed
the existence and continuity of higher-order partial derivatives of
1(P;+,*) on {(x(P,2),z)| L€ R}' is limited only by the value of

k, because of the chain rule, (1), (4), (8), and she fact that 7t(P;°,*)
is positive on {(x(P,2)Z)| ¢ € R}', so the function (X,t) ~
rX(IX](X,t) (P)) 1is also positive on this set. Consequently, the

proof of (i) can be completed by induction.

(i1) Now, the hypotheses of (i) hold for some k € NU{=}
and each P € 3R, Thus, each partial derivative of 1 with respect
to its second set of arguments, of order <k if k €N or any order
if k = =, exists on {(P,X,t)| P € 3R, (X,t) € {(x(P,5),z)|
;L ER}'} C]R7, and can be obtained from (1), (4), or differentiation
thereof. In particular, each such partial derivative exists on
Rx(BUa}, for 1f P € 3R and (X,t) €B°W’, then X € BB/,
so X € (3Bt)', so we must have X ¥ x(P,t), whence (X,t) €
{(x(P,2),2)| % €ER)}'. The continuity of each such partial derivative
on 3RB%U%} follows from the continuity hypotheses on {Dix}lj(gl
and from (1) and (4), either directly or by induction.

We shall allow these remarks to suffice for the completion of

the proof. 0.

We shall next introduce, and derive the most important properties
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of, our fundamental classes of smooth motions, denoted by M(q)

(q € Wi{=]}); even though it also proves convenient to consider
motions possessing properties stronger than those imposed here, each
family of smooth motions identified in [I.5] and Part IV turns out to
be a subclass of some M(q), and so possesses the important character-
istics which we are about to point out. Generally speaking, a motion
M will be said to be in a certain smoothness class {n M provided
there is a reference pair (R,X) for M such that 3R and X

satisfy certain smoothness conditionms.

[V.43] NOTATIONS. (a) Let M be an (r;n;q)-manifold.
Recall that MR 1is then an (r+l, n+l; q)-manifold. Whenever (U,h)

is a coordinate system in M, set
U* := R
and define h*: y* >R by

h*(x,s) := (h(x),s), for each x €U, s €ER. (1)

Then it is easy to see that (U*,h*) is a coordinate system in M<R.

Moreover,
h*(u*) = h(U)xR, (2)
and

h*~l(x,s) = (h'l(i),s), for each (%,s) € h*(U*). (3)

Observe that, if {(Ul ’ht)}1EI is a covering collection of coordinate




..........................

(08¢ systems in M, then {(U’:,h‘:)}IEI is a covering collection of

coordinate systems in MxR.

o
Ti: (b) Again with M an (r,n;q)-manifold, suppose that
(R RN
\".’\ - m m .
T f: MR >R 1is a function such that £ := f(-,z): M->R is in
k]
. Ck(M;Rm) for each 7 €R (for some k €EN). Then ch: M- [0,=)
". :
-j:* is defined for each 7 € R (cf., Definition [I.2.10.iii]), and we can
e
:?2 define Jf: MR - {0,») according to
\
.':,,-: Je(x,z) := ch(x), for each XEM, [E€R. (%)
e

‘l
.h-'

(c) Whenever f 1is a function valued in either K or some

v
-

]Rm, we shall write, as we have already in [V.42],

)

Py

Longiagey
'l

c ..l
£€ 1= < f, (5)

A
OIS

1Y &

-~

which should cause no conflicts with other notations.

C'.“.-

.l
.y :.

.
s

(d) Let M be a motion, and (R,x) a reference pair for M.

Recalling [v.15.vi], x*: 3RxR + 3B is a homeomorphism. In particular,
7 this allows us to associatée with any function f on 3B a function

‘I
53 2 on RR via

% = fox*; (6)

M

4"

€,
a

explicitly,

»
»

oy

%(P.c) = fox*(P,z) = £(x(P,%),z) for P € 3R, T €R. 7)

|
58 s
YN0

P

“[v.44] REMARKS. 1LlLet Y4 be a motion, (R,x) a reference pair

Gt
L)

K

L)
Ay Ay, Ay
4 ’J;’l}l_l. ’

.O -
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for M, and f a function on 3B. Obviously, f can be recovered

0 &-
from %: f= fO)("'r 1, or, explicitly,

£(z,2) = Pox*L(z,0) = %(x?(z),;) for each  (Z,Z) € 3B. (1)

Choose (X,t) E]Rl' and note that the two retardations [f][x t]
)
(on 3B(X,t)) and [f](x t) (on 3R) are defined (cf., [V.36]).
)

We wish to point out here the relation

g0y = [y 20 gy o0 R (2)

between these functions. To see that (2) is correct, let <t denote,
as always, the retardation function associated with R and ¥;
choosing P € 3R and applying the appropriate definitions,

o

[(£] (g oy (®) = (p,t-1(P;x,1))

i= £(x(P,t-7(P;X,t)),t-1(P;X,t))

E(X(P,t-T(P;X, 1)), t= T T, (x(P,t-T(P;X,1))))

[£f] [X,t] (x(P,t-1(P;X,t)))

()%, 010X (2, 0y -
This implies (2).

[v.45] DEFINITION. Let M be a motion, and q € NW({=},

Then M € M(q) iff M possesses a reference pair (R,x) such that
(1) 3R 1is a (2,3;q)-manifold,

(11) x € CIGRRERY),
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and
(iii) rank nx;(p) = 2, for each P € 3R, [ €ER. N,

[v.46] REMARKS. Let M be a motion in some class M(q), and

(R,x) a reference pair for M as in [V.45].

(a) Clearly, 3RxR 1is a (3,4;q)-manifold; recall that the
inclusion [V.45.ii] means that, whenever (U,h) is a coordinate system
in 3RxR, then xOh-l € cl(h() ;1R3). In particular, for any coordinate
system (U,h) in 3R, (U*,h*) is a coordinate system in 3RxR, so

1

we have xoh*- € clm*(u*) .1R3); explicitly, note that

X" lE,e) = x0T@,8 = x H®), for  (he) €M, )

<.e., whenever X € h(U) and s €R. It is, in fact, easy to see that
x € Cq(BRXR;R3) 1ff there exists a covering collection {(Ul ’hl)}IEI

of coordinate systems in 9R such that x°h’:-1 € Cq(h’l‘(U’:) ;RB) for
each 1 € I: indeed, the sufficiency of this condition follows from
[I.2.14)] and the fact that {(U‘:,h’: )}IEI is a covering collection of

coordinate systems in 3RxR, while the necessity is trivial.

(b) Let (U,h) be a coordinate system in aR. Since )(oh"‘“l €
cim*(u*) ;Rs), and h*(U*) = h(U)4MR, equality (1) shows that

-1 € Cq(h(U) ;R3) whenever f{ € R. Thus, X¢ € Cq(aR;lR3), for

)
xcoh
each { €R, showing that [V.45.111) makes sense, requiring that

rank D(xcoh-l)(h(P)) = 2, or, equivalently, ch(P) > 0, whenever

PEU and ¢ €R.
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q
j=14

continuous on JRxR: let P € 3R, 7 €R, and (U,h) be a coordinate

(c) We can show that the derivatives {Dgx} exist and are

system in 3R, with PE€ U. If Q€ U, s€R, and n€R, with
n¢¥ 0, then

1 { 1 ‘l '1 }

7 x(Q,s4n)-x(Q,8) } = = {x(h " (h(@)),s+n) -x(h " (h(Q)), )

{(xon* L) (h(Q), s+n) - (xon* ) (h(Q),) ).

3|

Letting n + 0, we find
Dx(Q,8) = Dy(xoh* ) (h(Q),9), (2)

showing at once that Dax exists and is continuous on the neighborhood
UXR of (P,z). Since x € Cq(aRXIR;R3), the process can be repeated

q-1 times, if q €N with q > 2, or indefinitely, if q = =,
It is also important to note that
|Dax(P.C) l3 < c*, for each P € 3R, Z €R. (3)
This bound is obtained directly from (V.1.l), since
% {x(PA,c+n)-x(P,c)} < c*,
if PE 3R, ER, and n€R, with n # 0.

(d) Since XC € Cq(BR;R3) for each 7 € R, the function

:1x is defined on 3RxR, as in [V.43.b]:

Jx(r,z) := Jx (),  for each PE R, ER. (4)
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ot If PER, Z€R, and {T;(P),T,(P)} is any basis for T, ,(P),
Pt

;rj then, by Definition [I.2,10.iii],

o TR [ Dx, ()T, (P)ADX, (P)T, ()|

1 K PO N

N,

However, if Bi E]R3 for i = 1,2, then lesz is defined, and

|BrA62[ = |61X82l3 (¢f. Fleming [15]). In the present case, we can

(4

& 3
o . “

7

s

therefore also write

|Dx, (PYT, (P)xDx (P)T, (P) ]

(5) W
T, (BT, (P)]

jX (P’ ;) =

basis {(h-l)’i(h(P))}i-l for TaR(P) can be chosen, leading to the

expression

. l(x, o071y, (@) x(x,0n™Ly, (n(®))]
Fu(e,g) = —2 2 3
La™), (@I M™) (BN

Now, if (U,h) 1is any coordinate system in 3R, with P € U, the \
(6) 1

as in the derivation of (I.2.11.3). When we observe, from (1), that
(1o 1) (h(P) = (xob*™), (W(P),0), for & =1 or 2, the local
representation (6) implies that 3x € C(3RxR), while if q > 1, we
even have 3x € Cq-l(BRﬂR); the details of the reasoning required to

verify these inclusions are plain enough.
Finally, from (V.45.iii], it is clear that
Jx>0 on  ARR. N

The properties of the classes M(q), q € NV{=}, of which the
principal ones are brought forth in the following statement, provide

much of the basis for the reasoning employed in Parts I-IV.

............
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[v.47] THEOREM. Suppose M 4is a motion in M(q), fcr scme
q ENU{=}. Let (R,x) be a neference pair forn M, with the propernties
0f Definition [V.45].

(<) Select any ¢ € R:

(1 x: R +R is a q-imbedding, taking oR onto

ch;

(2) Bz and B; are q-regulan domains 4in ]R3;

(3) 4or each P € 3R, DXC(P): TaR(P) > TBBC(XC(P))
48 a bijection.

(£d)  Degine v: 3B » R bg{+

v(Z,z) := Vag (2), gon each z €R, Z € 3B, (1)
c ;
and v: 3B - R by

V2D = V2,00, O (2),0),  foreach CER,  zE3B. (2

Then v 48 an intrninsde property cf M, called its

normal velocity.
(iidi) Recall the definition of the function x*, set doun
in [v.3}; cf., also, [V.15.vi].

(1) x*: 3RR +R' is a q-imbedding, taking 3RR

onto 3B; 4in particular, JIx* > 0 con 3RR;

+We write Vag im Vv s, for brevity.

o
4 Q{B;}

‘‘‘‘‘
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(2) B® and @° are q-regular domaind in ]Rl';

s

%

L
i (3) f§on each (P,z) € 3RR, Dx*(P,2): T ® o)
::;:} Tam(x*(P,C)) 48 a bifection;

e
@ " [4) the extonion unit nowmal gield vyg: 3B +R' for

MB°} is given by’

.

" :
X (2,0 - ; {vi(Z;c)ej(_a)-U(Z,c)eia)},
5 /{1+0°(Z,2) }
3 3)
e forn each (2,7) € 3B;

.i;

M (5} Jx* € c(3R®); Jx* 4is given by

Y

¥ Ix*(2,8) = /{1+f(x(P,2),2) x(2,2)

o . (4)
3 - /114322, 0) k(R 00, fon (P,z) € 3RR.

)
¢ {dv]  The functions v, Vap? and v anre continuoud on 3B.
*\ 1§ €N and q > 2, then ve ¥ leemd),

o vg € COlEmRY, and ve vl@B), white DS,

DIZ:TX, and DIZS exist and are continuous on 3RXR for
B k=1,...,q-1. 1§ q = =, <zhe Latter statement holds
with the obvious modifications.

w {v) Llet 1 be the netardaticn gunction asscciated with

N
e (R,x). Whenever (X,t) € BOUR®, then 1(<;X,t) €

. c3(aR), with
s,
L -

> 'We write v., = v , for brevity.
| ;i B am°)

sl
)
)
~N
Y 4
3
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ORI OP HIMNE

< g k(I g gyoh T () - (X oh™h),, ()

t-t(h 1R 5%, £)

“1,2vy.c 3 -
1+rx,j([X](x,t)°b (x)) [X’Al(x,:)°h

(vd)

¢ 1

(%)

forn each x € h(U), and i =1,2,

where (U,h) 48 any coondinate system in 23R,

Fix (X,t) € BugY:

3

(1) aR > R® 4is a q-imbedding, taking 3R

[X](X,t):
onto B(X,t);

(2) B(X,t)° and Q%x,t) are q-regulan demains 4in

]R3;'

(3) o each P € 3R, DIx) g y(P): Typ(P) »
Tap(x, ey (X (g, ¢y (B)) 48 @ béjection.

(4) Let P € 3R. An exterion nomwmal fon  3{B(X,t)°}

at  [x] g ¢y (B) 48 given by
o] oc .
[V](x’t)(P)+[U ](X,t)(P) '8rad rx (IX](X,t)(P))'

(5) JIX](X,t) {8 given on 3R by

I (g gy P = Ul gy (P - 1115, (PiX, 1)}

03] (g, gy PS5 (®) vgrad 2 (XD (g (BN g,

fon each P € 3R.

(5)

(6)

(N

.

B

» A P sala & B N n t RRRE ol
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5 . ‘
_{J‘) PROOF. (i) We have already remarked, in [V.2.g], that Xg is i
b4
( a homeomorphism of 3R onto aB;, and, in [Vv.46.b], that Xg € J
*'_’. Cq(aR;R3). It is given, in [V.45.iii1]), that rank DXC(P) =2, for
o9
f_- _ each P € 3R. Thus, Xg is a q-imbedding, and (i.1) is proven. In
L4
S view of [1.2.17.1], 9B_ = x.(3R) is a (2,3;q)-manifold. Now,
[v.1.i] says that BC is regularly closed, so Bz is regularly )
8 open (since Bz = (Bz-)o), and Bz-' = Bé; referring to [1.2.29], we 1
%
conclude that Bg and B£ are q-regular domains in ]R3, since
\
3{32} - 33C in this case. This proves (i1.2). (i.3) follows
immediately from [I.2.17.1il. i
(ii1) By (i) and [I.2.31], the unit exterior normal field
.
g - °} (= <
o vch : vB{Bg} for 3{8;} ( 38;) exists for each C €R, so v and :
};: v are well-defined by (1) and (2), respectively. To see that v is :
b - - : !
__ intrinsic ,4" let (R,x) be a reference pair for M. By definitionm, ]
.." - .
:::: there exists a continuous bijection F: B3R -+ 3R such that x(Q,s) = ]
\: x(F(Q),s) for each Q€ 31.2, s € R. This shows at once that DA;( )
[
) exists, 1s in C(R<R;R’), and :
1
. 5‘
’. - -
s Dax(Q.s) = D4x(F(Q),s), for Q € 3R, s €R. (8) !
4 i
-V 1
e Now choose [ €R, then 2 € BBC' It is simple to show that le(z) =
- F(izl(z)). which, with (8), yields
-
2 D xOCN2),0) = Dx(FGCE2)),0) = 0,k @),
. 4 14 ) 4 4 ) 4 4 3 ’
:;:: so also
5
I\‘ +
o ‘Obviously, v 1is intrinsic.
¢
3
&
.
v
4
\‘
>
O N A SRR T DI R v AT - A, RGN S AR




-1 - =
V(2,000 X0 (2),8) = V(2,000 XK (D), 0) .
Thus, v 1is intrinsic to M.

(1ii) 1In (Vv.15.vi], we saw that x* provides a homeomorphism
of 3RxR onto 3B, and we are given that x* € Cq(aRXR;IR4). Con-
sequently, to show that x*: 3RxR » R is a g-imbedding, we must
demonstrate that rank Dx*(P,;) = 3 for each P € 3R, ¢ €R, for
which it suffices to show that rank D(x*Oh*‘l) (x,Z) = 3 for each
(x,2) € h*(U*) = h(U)XR, whenever (U,h) 1is a coordinate system in
9R. Choosing such a coordinate system, since x*(P,z) := (x(P,z),z)

for PE€ 3R, [ €R, we see that

x"oh*1(5,8) = (xoh*1(5,8),5) = (x(h"1(5),8),5)
(9
= (Xs°h-1(3')»5): whenever y € h(U), s €ER.
Then, since xoh*-l € ct(n*(u*) ;113), and in view of (V.46.2), for
- * * %* *—1 i ~
(x,5) € h™(U"), the matrix ((x oh )’j(x’C))iiiik, 1<3<3 of
D(x*oh*-l) (x,3): ]R3 -’]Rl‘ with respect to the standard basis vectors
of ]R3 and ]Ra can clearly be written
(
-1,1 - -1,1 - 1 =10 )
(XCOh ),I(X) (x;°h ),z(x) l Xs4(h 7(x),3)
- . -1.2 .- -1~
oenhh @ xenhl o | X3, x),0)
-1.3 - -1.3 ,- 3, -1~
(xoh ™3 (xon 3, X7, (7 ) ,0)
‘ 0 0 1 J

e A A N,
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[v.45.1ii1], so the indicated upper left-hand submatrix in (10) has
rank 2, whence it follows easily that the matrix (10) itself must have
rank 3. Thus, X* 4is a q-imbedding of 3RR into ]Ra, and (iii.1)

. 1s correct.

To prove (iii.2), we can now reason as in the proof of (i):
directly from (i1ii.1) and [I.2.17.1], B = Xx*(3RMR) is a (3,4;q)-
manifold. By [V.15.iv], B is regularly closed, so 3{B°} = 3B,

(o]

Q :=B' -Bo-', and B° is regularly open. Thus, [I.2.29] allows us

to assert that B° and $'2° are q-regular domains in IRA.
(1i1.3) is statement [I.2.17.ii]}, phrased in the present setting.

Since B° is a q-regular domain, the exterior unit normal
field Vo StV for 3{B°} (= 3B) exists; we must show that the
o
3{B"}
representation (3) holds. To see this, we begin by observing that if
QE 3R, s €R, and {Tl(Q),Tz(Q)} is a basis for TaR(Q)’ then, by
Remark [I.2.5], {Ti(Q)eia), T;(Q)eia), elfa)} is a basis for
TaRx]R(Q’s); by (1i1.3), Dx*™(Q,s) carries the latter basis to a
basis for TaB(X*(Q’S))' Choose § é]R, Z € BBC (so (Z,%) € 3B)
and set P := le(z), so (P,2) = x*1(2,7). Let (U,h) be any

coordinate system in 3R with P € U. Now, Dh-l(h(P)): R?

> Tor(P)
is a linear bijection, so it takes any basis for ]Rz onto a basis

for T.,(P), which, in turn, Dx,(P) maps to a basis for T 2),
3R 4 aB;

because of (i1.3). Thus, we can construct the basis {Thl(P),Thz(P)}

for TBR(P)’ where
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T 4 (P) := Dh-l(h(P))e§2), i=1,2, (11)
thence producing the basis
{DXC(P)Thl(P)’ Dx, (P)T, ,(P)} (12)
for TaB;(Z) and the basis
(ox* 2,01y (Mef®, pxree, 01, @Y, pete, el (13)

for Tg(Z,%) (noting that (Z,z) = x*(P,2)). We claim that the

elements of the latter basis are given by

et ihed b

" 1 e o -1, (4) .
* %) _ .3 4), (%)
Dx (P.c)e4 x,a(P,c)ej +e, . (15)
To prove (14), observe first that the matrix of Dh*_l(h*(P,;)): ]R3 »Rl‘
;- with respect to the standard basis vectors of IR3 and ]Ra is, from
< .
(v.43.3),

[ - -
ahyme) e bhleen o

abhieen  ohiLeen o

(@*h o, , - L, L, (16)
1953 (e hlieen e hieen o
: 0 0 1
; Thus, for i = 1,2,
§ ot e,0)e? = h el - (on~ Py P13 (¥
) _ Tgi(P)e.‘gk). 17

AP I A ) O T S A I S T MR I R P o R ST
N I, A YL R, AL I I RN IS N A s 2 A it toa ‘_Lf‘nh‘_nt"}.a“ Y.
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Also, using the matrix (10), with % = h(P),

§3) = (xcoh.1 4i(h(P))e§4), for 1 =1,2. (18)

D(x*oh™™1) (h*(P,2))e
From the definition (I.2.10.1), and accounting for (17) and (18), we

compute

(4)

Dx*(P.c)'rgi(P)ej

- n<x*oh*'1>(h*(r,c))o{nh*‘l(h*(p,c)>}‘1rgi<p>e§“>

= D(x*oh*'l)(h*(P,C))e§3)

. (xcoh‘1>2i<h<P>)e§“’, for 1 =1,2,

which is just (14). Proceeding to the verification of (15), we see
that
ph* L (n*(p,0))el = &), (19)

from (16), while, from the matrix (10),

D(x*oh*‘l)(h*(P,c))e§3) - xéa(p,c)eg“)+e£4). , (20)

Using first (19), then (20),

Dx*(P,C)eza) = D(x*Oh*-l)(h*(P,C))o{Dh*-l(h*(P,C))}-1e24)

- pG*on* ™ ¥ (@,00eg = o (L )e eV,

4.2., (15) holds. Let us use (14) and (15) to compute the scalar product

of Vk(Z.C)eia)-U(Z,C)eza) with each element of the basis for

TaB(Z,C) given by (13): for 1 = 1,2,
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(4)

04,06 oz, e V1ot onHI e

b

= @z, en ™I mee) - V3p, @eDx ()T (B) = 0

-1
(since Dxc(P)Thi(P) € 'l‘38 (2)), and, recalling that P X, (z),

® (8o ()

~uz,00e V1ot (7 0)e!

= v(Z,5)0x,,(x;  (2),8)-u(Z,0) = O,

) _ 2. 09e® e

the latter equality by (2). Thus, v (Z c)e ,;)e NB(Z,;),

and tne vector on the right-hand side of (3) is then a unit normal to
3B at (Z,z). The proof of (iii.4) shall be complete once we have

(4) (4)

shown v (Z,C)e to be an exterior normal for 3B at

-u(Z, ;)e
(Z,7). To secure this conclusion, we again use the fact that B® is
a q-regular domain, proven in (11i1.2). Thus, there exist an open

of (Z,z) 1in ]Rl' and a function ¢

neighborhood U, .0 €
Cq(u(z';)) such that grad O(z’;)(Y,s) # 0 for each (Y,s) € U0y
amnu(z -~ 3{B°}GU(Z’ y " {(y,s) € U(z’c)l ¢(z’;)(y,s) = 0}, and
B, ) = (1,8 €U, | 8, (¥,8) <0} By appealing to Remark

[I.2.32.b], we find that grad ¢ )(Z.C) is an exterior normal to

(z,z
AB®} (= 3B) at (z,z). Since Nm(z,;) is one-dimensional, there

exists some a €ER for which

(4) (4)

v (Z ;)e u(Z,c)e = q grad ¢ (z,z); (21)

(z,z)

obviously, a ¥ 0. From (21), we can conclude that v (Z ;)e(a)

(4)

v(Z, ;)e is an exterior normal for 8{]30} at (Z,gz) by first show-

ing that a > 0, which we now proceed to do. Since vQ(Z,C) # 0 for

.v\-,'? v ?‘ e, .j.?.‘:.-.. 'i"‘ - .':‘*.-: L p e -.~¢:~a_-_- e .—‘.'-_\‘—_u :__.:_.q:_.“—

.................................

i
!
!
'
;
i
!
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some £ € {1,2,3}, (21) implies that D%z ;)(Z,C) # 0. Then we can

find an € > 0 such that B:(Z,z? c U(Z,;) and
D2¢(z’;)(Y,s) 40 for each (Y,s) € BZ(Z,C). (22)
Note that
v 4
grad O(Z’C)(Y,s) #0 for each (Y,s) € B_(Z,2), (23)
4 4
MBOB_(Z,8) = {(¥,8) € B (Z,0)| ¢, ,y(¥,8) = O}, (24)
and
0 pl 4
B rB(Z,5) = {(¥,s) € B (2,8)] ®z,z) (¥»8) < O} (25)
Define @Z: Bz(z) +R by setting
0, (1) 1= ¢, (Y,0), foreach Y€ BY2). (26)
c1 (g3
early, oz €¢C (BE(Z)), and
3
D1°Z(Y) = D1°(z,;)(Y")’ for each Y € BE(Z) and i€ {1,2,3}. (27)

From (27) and (22), it follows readily that grad @Z(Y) $ 0 for each
Y € 32(2). Further, it is a routine matter to prove that BBCﬂBz(Z) =
(vy e B:(Z)[ ¢Z(Y) = 0}, wusing (24), (26), and the fact that B =
Ver (8 x{s}}, by [V.15.11i]. Similarly, the equality B?ﬁag(z) =
{y € 32(2)1 @z(Y) < 0} 1is an easy consequence of (25), (26), and the
representation B® = Ugsn_{B:X{s}}, which is from [V.15.ii]. Thus,
grad ¢Z(Z) is an exterior normal for 3{82} (= 38;) at 2, whence

- K - . .
there {s an a > 0 such that v (2,%) uDk¢Z(Z) aDk¢(Z,;)(Z”)
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o for k = 1,2,3. In view of (21), we must have a = a. Thus, o is

indeed positive. As noted, the proof of (iii.4) is now complete.

To prove the equalities (4), choose P € 3R and ¢ €IR; using

§4), ng(P)ega), e24)} for TBRKR(P’C)’ constructed

as in the proof of (iii.4) by selecting a coordinate system (U,h)

h
the basis {Thl(P)e

in 3R with P € U, the definition [I.2.10,iii] says that

Iox* (2, 1)) (Pre A p, )1y () [ VAo 2, ) )|

. (28)
|Tﬁl(P)egé)AThz(P)eik)Aei4)|

JX*(P) g) =

For the vectors involved in the exterior product appearing in the
numerator on the right of (28), we have established (14) and (15). For

brevity, let us write

i
']

a§ = (xcoh-l) (h(P)), for 1€ {1,2,3} and je€ (1,2}, (29

a,f - xf,‘(P,;), for 1€ {1,2,3}. (30)

A short computation gives

1 (G) 3 (8)\, k (&), (&)
aje, /\azej /\{aaek +ea }
1 11
3 2 4 1
%2 Gy, )
2 o2 2| o wp@
a) 8, a,| e ey, ey +az 20 e Ne, “Ne, 31
3 3 3 12
al 32 aa )
1 1 2 2
- %2y @l 2 @ @@
;; + 3 83 el Ae3 Ae4 + 3 83 e2 /\e3 A34
N 3 2 3 &
,_{;
L]

e,

.l
AR

RI. vy

OV VIR SRR PR T Y T . W AR e
R T R I P T St S S L NN DI Tt Tt S A TP S A A “’h‘.ﬂ.":h‘. = \j-'-\. YO
iy ‘.fi.:n‘- AP AT IR (VPRI NG 1. SIS AR . . X . aMahata

WL AL
T TR SN IPE, Fi
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'.} Setting
L 2 43 13 Al .2
1 1 1 2 1 1l 3 1 1
AT = 3l AT o= o| 3 and A° := 1 2| (32)
22 2 la; 3 a3 3
we then have
1 (NI GIp, Kk (4), (4112 4,12 1.4
Ialei aze, /\{aaek +e, } (a,A7)"+A7A
(33)

i 2
2 i A
= |Al3 {1+[34 TZT;] } .
Now, clearly, using (11), for i =1 or 2,

Dy (BT, () = dCxoh ) h®ef® = (xob™ h@e - el )

from which we find, accounting for (32),

Dx, (P)T, , (P)xDx, (B)T, , (P) = Aie§3) = A. (35)

Since {Dx;(P)Thl(P), Dx;(P)ThZ(P)} is a basis for Tasc(x(P,c)) (by
(1.3)), it follows from (35) that A € NaB (x(P,2)), so we have
4

A/|A|3 = v(x(P,2),5) or = -v(x(P,Z),z); whichever the case,
(agat/1al p? = d, v i, 0,002 = o0, (6

Using (35) and (36) in (33), we find that the numerator on the right-

hand side of (28) is
4
laie(a)Aaje(A)A{aZef )+e§4)}|

171 273 37

3-/{1+u2(x(P,C),C)}-

- lec(P)Thl(P)xDx;(P)Thz(P)
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-_:_,
N
AR
f}: Next, we compute
AN
{ 3 (4) gk (8) 5, (4) 1 2 2 1 (8)5 (6) 5 (4)
A = -
Y 'l?hl(P)ej ThZ(P)ek e, {Thl(P)Thz(P) Thl(P)ThZ(P)}el /\e2 /\e4
= 1 3 3 1 (8)p _(8)p_(4)
:'::3 +{Thl(P)Th2(P)-Thl(P)Thz(P)}el Ae3 /\e4
2 3 3 2 (4), (4), (4)
2 +{Thl(P)Th2(P)-Th1(P)Th2(P)}e2 Ae3 Aea R
.3Z€t
Q' whence ‘it is easy to check that
\ h| (4) 5.k (8, 4) _
IThl(P)ej AT, (Ble, "Ae, M | = T (B)XT,, (P) | 5. (38)
vxﬁ Observing that, in this special case,
Saerry e Iy (py = X T BV DT () |
A H . ’
§ 4 [Thl(P)XThZ(P)[3
e
- insertion of (37) and (38) into (28) produces
)
4 2 -
o Ix*(P,g) = Y{1+v"(x(P,8),8) }-Ix(P,2), ;
] ;
:E just the first equality of (4). The second equality of (4) 1s a simple 1
] consequence of the first and the definition S(P,;) := u(x(P,%),z5). ;
) 4
“ Thus, (4) is correct. i
% ]
A Finally, the inclusion Jx* € C(3RR) shall follow from the
}E ~ representation (4), once it has been established that u € C(3RxR),
".
fj which we shall do shortly, in the proof of (iv) (without appealing to
< (111.5)); in this regard, recall that Jx € C(3R<R) (cf., [v.46.d]).

i

.

00000071 @2

(iv) Since we now know that B° is a q-regular domain, the

statements here concerning v (:= v ) follow immediately from
B 3(B°}
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Proposition [I.2.31]. Consider next v: 3B -~ R. From ¥,

-1/2

V;B = -v'{1+v2} on 9B,

from which we first see that [v;BI <1 on 3JB, then that

L = -vk {1-(v 2}-1/2

aB )

;‘ 3. (39)

B
Thus, the statements of (iv) concerning v follow from those for

Vap* Clearly, (3) allows us to use the same strategy in proving that

v possesses the properties claimed, for it shows that

i

i 2,1/2
v V.B {1+v°}

on oB. (40)

We choose to defer the proofs of the assertions concerning 3, 3x,

and O until after we have verified (vi).

(v) Select (X,t) GIBOUQO; we shall use the implicit function
theorem to prove that 1(-;X,t) € cIGR). - Let (U,h) be any coordinate
system in JR. Since (X,t) € 3, we see that X & aBt, s0 rx(x(P,t)) >
0 for each P € 3R, which gives, by [V.35.41], +t(P;:X,t) > 0 for

each P € 3R. 1In particular,
T(h-l(ﬁ);x,t) >0 whenever x € h{U). (41)

Now choose any io € h(U). Then, recalling the manner in which 1 is

x 0 1] ‘l 0 L b 0 yiry

whence it follows that the function (%,7) !> rx(x(h-l(i),t-é)) on

---------------
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h(U)XR 1is positive at (io,'r(h-l(io);X,t)); the function obviously

being continuous on h(U)xR, we therefore conclude that there exist

ol
LS Yo T
LAl BANE B ok B b o memm

“' an open neighborhood VO C h(U) of ;‘0 and a 60 > 0 such that

N

".n -1 ~ ~ -1 ~ 3

" rx(x(h (x),t-g)) >0 for x€ Voo |g-t(h (xo);X,t)l < 8p. (43 1

M . 9

o q 3 - -1 . *=1_ . !

\1 Since x € C7(3RxR;R”) implies that (x,s) +» x(h “(%),s) = xoh™ " (%,s) 1

‘\‘ o

:: is in Cq(h(U)*R;Ra), the same is clearly true of the function h

- Y

> (x,2) = x(h l(i),t-c). The latter fact, when coupled with (43), tells E

\

25 us that the map (x,Z) rx(x(h-l(i),t-c)) is in Cq(VOX(&,B)), where ;

'\ em =1, . _ em =1~ . . .

:j a := 1t(h (xo),x,t) 60, B := t(h (xo),x,t)+60. Defining F: i
VOX(G’B) "R by

-

o - 1 -1,- .

X F(x,2) = §- < rplx(h 7 (x),t-2)), for x€V,, € (a,8), (44)

Y

" we have F € Cq(VOX(C,B)) and F(io,‘r(h-l(io);x,t)) =0 (by (42)).

,::", Moreover, the Cauchy-Schwarz inequality gives

2

~ Foq (s 10 () 5%, 0)

% = 1+ L grad r (x(h "Lk, t-1(h " (k) 3K, 0)))ex,, (WL (R ), et (b X&) 3%, 1))

'-l:, Cg xx ()} 0’! X!‘. 0) 0/

- (45)

ol 1 -1, -1,- *

: 2 1- 2 b 7 R et g X0 |5 2 1- €5 o,

3‘: having used (V.46.3). The implicit function theorem and its proof

'I. h

s (cf., e.g., [VI.2]) then imply that there exist an open neighborhood

L,

'11 W c VO of io and a unique function £ € cq(wo) such that

»f: (%,£(X)) € V;yx(a,8) for each %€ Wor (k) = r(h'l(io);x,t), and

- U | -1, - P .

? f(x)- Py rx(x(h l(x),t-f(x))) = F(x,f(x)) = 0 for each x € wo. The

]

-

v,

"

)
Gl
L

Pt ]
.
8
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uniqueness of T (cf., [V.31]) implies, of course, that we must

have

£() = t(hM(R);X,t)  for each k€ W,

so the function xp r(h-l(i);x,t) is in cq(wo). Since x. was an

0
arbitrary point of h(U), we can now assert that r(h-l(-);x,t) €

Cq(h(U)), hence that 7t(-;X,t) € c(3R).

The proof of (5) is now straightforward: again with (X,t) €
BUY  and (U,h) any coordinate system in 3R, let us temporarily

write T (X) := T(hN(%);X,t), for each X € h(U). Then

' Th(i)- %-rx(x(h-l(i), t-rh(i))) =0 for each x € h(U), (46)

and ™ € Cq(h(U)). Consider the function [)(](X t)oh_lz h(U) *1R3,
9’

given more explicitly by

[X] g, ey°h TG = x(hHE), t-1(hTHR)3%,0))
(47)
= X(h-l(i),t-th(i)), for each % € h(V).

This is the composition of the map (x,Z) b xoh*-l(i,c) = x(h-l(i),cx
in cq(h(U)xR;R3), with kb (%, t-t(h 1(%);X,t)), in Cq(h(U);R3),

showing that [)(](x t)oh-l € Cq(h(U)dR3). A short computation, using

the composite function theorem, yields

o O L LY, UL R, R R T A A R S o S R . L R O A R N
ty a ity % lmnum}‘)_. s M e N e " '.‘.!4\7- l'i“.‘ W o"w o e et "q'..j-':h}hlﬁ).n‘t:n'}:l}.lm\ )‘_"A\_A "Aj:“.- \A_.:i

LAY
g D VAP N
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oh™hH &) = on*™HI G, e (20)

(Ix g, ) 'y
~tp 1 (0 - Oeb* ™3 &, e ()
48
103 s P BEPE N .
" (Xc-rh(i)°h 1 =1y (B o, (h 7)), e-m (3)),

for x € h(U), j € {1,2,3}, and i€ {1,2},

the second equality following from (V.36.2) and the fact that
(x0h*-1) (x,7) = (XCOh-l) (x) for C €ER, x € h(U). We can now differ-

entiate in (46), obtaining, via (48) and some rearrangement,

:C
(I4r, L (MR, E-1, (00D o 07  eomy () Dy L ()

1 -1, 4 - -1.k ,-
=< rx,k(x(h (x).t-rh(x)))-(xt_Th(;‘)oh ), (), (49)
for %X € h(U) and i € {1,2}.

Reasoning just as in the derivation of (45), we find that the coefficient

of (x) on the left of (49) is > 1- 2—* > 0. Thus, (49) immediately

"h,i
gives (5), upon introducing the retardation notation. The proof of

(v) 1is complete.

(vi) Fix (X,t) € B%UY: Proposition [V.38] s;ys that
[X](x’t): 3R -’]R3 is a homeomorphism of 3R onto 3B(X,t) (for any
(x,t) E]Ra), while it was shown, in the course of the proof of (v),
that IXJ(X,t)oh-le Cq(h(U);IR3) whenever (U,h) 1s a coordinate
gystem in 9R, 4.e., that [x](x’t) € Cq(BR;IR3) (here, the condition
(x,t) € B%uo® is, in general, necessary). To complete the proof of

the contention that [)(](x t) is a q-imbedding, we must show that the
*

N N T N A AR e A T A N N A AN S e e aa e e T eI



rank of [X](X,t) at each P € 3R is 2, or, equivalently, that
J[X](X,t)(P) >0 for each P € 3R, which shall be apparent once
the expl{cit representation (7) has been verified. Indeed, we have
Jx >0 on 3R (cf., (V.46.7)), so [jX](X,t)(P) > 0 for each

P € 3R, while the result (V.42.2) shows that l-r;a(P;X,t) >0,

since 1+ grad rx([x](x’t)(P))O[xfal(x’t)(P) > 1- %: > 0 for each

P € 3R (just as in the proof of (v), the inclusion (X,t) € B’ gives
t(*;X,t) >0 on 3R, so rx([x](x,t)(-)) >0 on 3R, and

grad rx([x](x’t)(-)) is defined on 93R). Further, the definition (2)
and inequality (V.46.3) give |u] < c* on 3B, whence [%c| :_%i <1

on JRxR, and we have

o oc
|91 (x, o) DI+ (¢ () (®) wgrad rp(lxd g ) (B4

oc 0 oc,2 1/2
(192080 (@) 18] g o) (B) egrad o ([x)y  BN+IETy ) (®))

(50)

1/2

oc oc,2 oc
2 (2197 (g gy B Ty, oy BIVTT = [ ] p y PI] > 0

for each P € 3R. Therefore, proving (7) shall also finish the proof

of (vi.l).

Turning, then, to (vi.5), choose P € 3R and a coordinate
system (U,h) in 3R with P € U. Once again selecting the basis

2
{Thi(P)}i-l for TaR(P)' given by (11), we can compute J[X](X,t)(P)
in the present case from

ID0x] (. gy (PIT, 3 (PYDIX] (4 (PIT (P) |4
T (g, 0y (P) = [T, L (PIT, ,(P) 1




{‘.f‘_}

v )
v

s

oA RO ".“‘."
.-".-“'.-";'.r.nt -"of-,'."’.'.'

a

. Y J I. a_8
o 4 '1{5‘:0‘. | '..".‘.'-\ ‘.' ‘l. ."

e

* Y- '- - "-
’ ‘.’A‘:._A\J"ls.}l

Now,

DIX] (g ¢y ®ITy s (®) = DUUIx] (g 1yoh ™) (h()re?)

(52)

(3), for 1 € {1,2},

-lj
= ([X] ¢y R DT, (h(Y)eg

while we have already available the expressions (48) (in which we set

x = h(P)) for ([x](x’t)oh'l)gi(h(P)), for j € {1,2,3}, i€ {1,2}.
Thus, for 1 € {1,2,3},

i
{D[X](X,t)(P)Thl(P)XD[X](x’t)(P)ThZ(P)}

- -1,3 e 1) d
€3 g1l Xecr (pyx, 0y DI (EN =TT C)iX,0), (B - 1xd] oy (P}

-1.k -1 ' k
Uorpix, )P V1 BEN TR ()X, 0, (B IX3, ] (g oy (B

- -1, . -1,k
kKoot (23,0 D71 BEN (K (pug gyoh g (BIR)) (53)

S OE SO IACTL PR GRS, Yo s CICO D S P e

T X0, (B ey (Ko (pox, 6y DM@ IXE,) o B

(x,t

replacing T(h-1(°);x,t),2(h(P)), for 2 = 1,2, by the expressions
given in (5) (with x = h(P)), and taking into account (V.42.2), the

right-hand side of (53) is

= -lj . 'lk
€y gk Xemr(psx, )0 I BEN X piy )R )7, (B(RY)

H1-t5, (P3X,8) ) e oh™d, (h(p))

ijk{(xt-T(P;X,t)

. -1l.u _ -1 j
(Xt-T(P;X,t)oh )’l(h(P)) (xt‘T(P;x,t)Oh )'l(h(P))

c

-l.u k
SO qpix, ey D@y (X NI,y @)

L
[
L
L
1
9
L
L
§
1
1
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N . “1.3 e ipyy. -1,k

’i:_ €15k Xe-1(p;x, )P 3 (RN (X p.x ¢yOD )y, (h(P))

| 1y !

-{1-1;,(P;X,t) }ee,_ (X oh 7),. (h(P))

:.:: 4 fmn ' “t-1(P;X,t) 1 (54)

‘\; : +(x °h-l)n (h(P))+{$ (Ix] P))-[ kc] (P) i

< t-1(P;X,t) 2 127x,k X (x,b) Xo4d(x,t) ‘
3©

-‘: . -[X'IO](x,t)(P).rx,i([X](x,t)(P))}’

::3 the latter equalfty following from i

3 -1.3 . -1,u

3 (x:-r(P;x,t)Oh ,z(h(P)) (Xt-t(P;x,t)Oh ),l(h(P))

S

< -1, -l.u

Ei I S E I CTe DRI CHNPNC N ML CIED

L -1,m -1,n

:’: A = -ejuielum(xt-‘r(P;X,t)oh )’l(h(P)).(xt-T(P;x,t)Oh )12(h(P)), {

:‘: b

: and then :

{ ] kc

7 €13k 3uex,u¢ X (x,0) P D64 (5, ) B

28 . K© 26

f::: - ‘Silrx,k( [X](X,t) (P))'[Xaalcx,t) (P)°rx’i([x1(x’t) (P))'[X,/‘](x't) (P)~

‘. ) Once again, it is to be emphasized th'at grad rx([x](x’t) (P)) exists, k

since r:x([x](x t) (P)) = ct(P;X,t) > 0, due to the hypothesis (X,t) €

BU®, 1o develop further the expression given in (54), we use (V.42.3)

to rewrite it as

o -
RARAR AR \F P

[y
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c
= - - . M . [ 2
(1175 (B X, ) bery ) (IxD (g oy (B2 D5y T (g ¢y (B

. -1,3 . -1k
eijk(xt‘T(P;x,t)Oh 91(h(P)) (Xt-T(P;X,t)Oh )Qz(h(P))

. (P T2 |
HI-T,A(P,X,C)} [X’A](X,t)(P)'rx,i([X](X,t)(P))

oh"hd, (h(P)) - (x S LA Ye )

€3k Xemr (5%, 1)

t-1(P;X,t)
. (55)
= {l-r;b(P;X.t)}"
. -1,3 . -1,k
ey 1 Xer (psx,0)®P D31 PEN (g (poy. ()P ey (P
2€ -1.j
+{[x,al(x,t)ip)'eljk(xt-T(P;x,t)Oh )91(h(P))
-1.k
.(xt-T(P;x,t)Oh )’Z(h(P))}rx,i([X](X,t)(P))}‘
Now, note that
DX (P)T, , (P) = D(x oh™ly (n(pyyel?
t=-1(P;X,t) hi t-t(P;X,t) i
(56)
- -1.] (3)
(xt-T(P;X,t)Oh )’1(h(P))ej . i€ {1,2}.
Further, {Dxt-T(P'x t)(P)Thi(P)}i-l being, by (i.3), a basis for
TaB (x(P,t-t(P;X,t))), we must have
t-1(P;X,t)
lsl(x t)(P) 1= J(P,t-1(P;X,t)) := v(x(P,t-1(P;X,t)),t-1(P;X,t))
= vap (x(P,t=1(P;X,t))) (57
t-1(P;:X,t)
DXy v (psx,t) P Th1 (PY* DX (pix, o) () Tpyo (P)
-‘ b] ) ] 2 ] R
TDXt-t(P;x,t)(P)Thl(P)xDXt-T(P;X,t)(P)ThZ(P)]3

where 1 is +1 or -1, as the case may be. Since
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o 0 0

o [C]) (P) := u(P,t~1(P;X,t)) := v(x(P,t-T(P;X,t)),t-1(P;X,t))

\4 (x,t) .

~,

t= v(x(P,t-1(P;X,t)),t-1(P; X, t))

‘ .
o X4 (Xer(psx, ) X(Ps t=T(P5X,£))), E-T(P5X, £)) (58)
';. o

X = [\’](x t) (P).Xaa(P’t'T(P;x’t))

S

.:' - [*]
3 181y ey BI00x0 4] (g gy (D

i we obtain from (55), using also (56) and (57),
4

v = !Dxt_T(P.;x,t) (B)Ty, (BYXDX, 2 (p,x, ¢y () T2 (P |y {1-15, (5%, 00} (59
Y

:? ‘{[3] (P)+[8c] (P) -grad r_([x] (P))}

7 (X,t) (X,t) X H(x, ) .

\J

Insert the expression appearing on the right of (59) into (51); (7)
z: results thereby, for, |1| = ], we have already shown that
2
o {1-1;,(P;X,£)} > 0, and
.3::: ) [JX](X,t)(P) - JX(P,t“T(P;x,t)) o= JXt-t(P;X,t)(P)
:- (60)
7 e ik, e DT B DX x, 0 P Tha P
]Thl(P)xThz(P) | 3

4’.

5 With this, the proofs of (vi.l) and (vi.5) have been completed.

q Statement (vi.2) is proven by the same reasoning used to verify

; (1.2) and (111.2): by [1.2.17.1) and (vi.1), 3B(X,t) = [x] y . (3R) 1is

: a (2,3;q)-manifold. According to Theorem [V.32], IB(X,t) 1is regularly
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closed; in particular, a{n(x,:)°} = 3B(X,t), ]B(X,t)o-' =B(X,t)' =

»

M
[AA

B'(X,t) = 9°(x,c), and B(X,t)° is regularly open. Directly from

—_——

Proposition [I.2.29], I[B(X,t)0 and Qo(X,t) are gq-regular domains

"y
(vi.3) is a simple consequence of (vi.l) and [I.2.17.ii].

::-:: Turning finally to (vi.4), let P € 3R. Parenthetically, we
-,

) oc .
e remark that it is easy to see from (59) that [V](X,t)(P)+[U ](X,t)(P)
1\

. grad r_({x] (P)) €N ([x] (P)), and it was shown in
N X (X,t) HB(X,t)°} (X,t)

-

Y '-Q

SON the proof of (vi.5) that this vector is non-zero; to prove that it

AN

" provides an exter{on normal to B{B(X,t)o} at [X](X £ (P), however,
-.';::: . it appears to be easiest to proceed as follows: because (X,t) € "B =
o 0 . —1(P;

o MBY, ([Xly o) (P)rt=T(BsX,t)) € 3B p.y o *{E-T(P5X,0)} C
{ B = 3(130}, and B° is a gq-regular domain, it follows that there
, exist an € > 0 and, setting W_:= Bl‘([x] (P),t-1(P;X,t)), a
‘- € € (xst)

SSAN

\_,: function ¢ € Cq(we) such that (X,t) € We, grad ¢(Y,s) ¥ 0 for

each (Y,s) € we,

R
Y o
y By W = {(v,s) €W | ¢(Y,s) = 0}, (61)
T € €

N

-‘~

B and

X

% B°W_ = {(¥,s) € W_| ¢(¥,s) < 0}. (62)
3

WY
£ Then grad ¢(2,Z) 1s an exterior normal to 3{B°} at each (Z,7) €
35
\},E a{B°}nwt; in particular, using (3), it is easy to see that

N

SN - . € .

0N Q’g([x](x,t)(P)’t 1(P;X,t)) ¥ 0 for some 2 € {1,2,3}. Consequently,

&)

L

.

A

LS

~

0

Q)
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0N .
f.:-f by returning and choosing a smaller positive number, if necessary, we
AN

" ) can suppose that € 1s such that

:j:

A ¢,,(¥,8) # 0, for each (Y,8) € W_. (63)
::'.j: '

- Next, following the construction in the proof of (iii.4), define

. - 3 .

:::: $: BE([,\](X’t)(P)) *R wia
o
~e 2 . . 3

X $(Y) := o(Y,t-1(P;X,t)), for each Y€ Bs([X](X,t)(P))' (64)
: 3

i $ € ¢l

.;::_: Obviously, ¢ € C (Be([X](X,t) (P))), with

)
N 5 . (3)

grad ¢(Y) = ¢,1(Y.t-r(P,X.t))ei #0,

W (65)
wy for each Y € BI([x] (®))

0% © e X x, )t

-t

B

'.f.‘:: having taken into account (63). Reasoning as in the proof of (iii.4),
‘._ it is easy to show, using (61), (62), (64), [Vv.15.ii], and {v.15.1iii],
20

L (o] 3 3 4
[L & - e =
b that 3{B___ (p.y )} B ([X) (g ¢y () = {Y € B(Ix] ¢ (y(BN] (D) =0},
o]

< ° nB3 - 3 $

. and B (p.x o) B ([X) g (y(®)) = {YE Be([x](x,t)(l’))l ¢(Y) < 0},
::::: remembering that 3{B°} = 3B and 8{32} = aB; for each 7 € R. Thus,
oo

Xl 3 - - . (3) s
t\.'_;: grad °([X](x’t) (P)) °’i([X](X,t)(P)’t t(P,X,t))ei is an exterior
-
o

- normal for a{Bt-r(P;x,t)} at [X](x,t)(P)’ whence there exists an

. -

o a > 0 such that

% 0, ([X] 1y oy (), e-1(Psx,e))el = ae8)  (P). (66)
N i x,e) "7 2 i x,t)

\ Now, the map s+ (X(P,t-1(P;X,t)+s),t-1(P;X,t)+s), on R into IRA,
'f:::j is continuous and has values on 3B (cf., [V.15.1ii]). Since we is
O .
e

a an open neighborhood of (x(P,t-1(P;X,t)),t-T(P;X,t)), there is an

I,_-

A

'\‘

'%'

¢

)‘&:

L]

f_.c

YA

> _ 7
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€ > 0 for which (X(P,t-7(P;X,t)+s),t-1(P;X,t)+s) € a{B°}ﬁwE if

ls| < €p> SO

$(x(P,t-T(P;X,t)+s),t-1(P;X,t)+s) = 0, for Is| < € (67)

O,
by (61). Differentiating and setting s = 0, (67) yields
i
= 0,
which, with (66), gives, in turn,

(1) (g gy (BT (BiX,00) = GI3] 0 (BYOIX, ]y o (P)

(X,t)
(68)

- '&[Sl(x,t) ®,

the latter equality by (58). Having laid the groundwork for the proof
of (vi.4), let us continue by observing that WE(X,t) is open in ]R3

(by [Vv.20.1]) and contains [)(](x t)(P)’ since
1 .
([XI(X,C)(P) y t- E rx( [X](X,t)(P))) = ([X](X,t) (P)’t-T(P,x’t)) € wE.

Consider the function [<b][x t]: we(x,:) +R (cf., [V.36.i]), given
9’

explicitly by

' . 1
[°][X,t](Y) = 0(Y, t- 2 r (1), for Y €W (X,0).

Since X & we(x,:) (because we ensured that (X,t) € we), it follows

that [0]{x 0 € cq(we(x,:)), with, for Y € W (X,t) and i€ {1,2,3},

(01 1y ¢],4 (D) = &, (Y, & 1 -e, (v, e IRy

X,1i
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Thus, using (66) and (68),

(3)

grad [°][x,:]([X](x,c)(P)) = °’i([X](x,c)(P)’t‘T(P;X’t))ei

-°,4([x](x,t)(P),c-T(P;X,t))
+ 2 grad r(Ix] 4 o) () (69)
o 0 o] od
= u{[v](x’t)(P)+[u ](X,t)(P)
+ grad rX([X](X,t)(P))}'

In particular, (69) implies that grad [<l>][X t]([x](‘x t)(P)) # 0, so
we can find an € > 0 such that Bg([X](X,t)(P)) c WE(X,t), and
grad [‘1>][x t](Y) # 0 for each Y€ Bg([X](x t)(P)). Let us next point

out that
ABR DWW (K, 0 = (¥ €W X,0] 0], (D =0}, (70)
and
m(x,:)°nwe(x,:) = {Y € “e(x")l COPERTC I 0}. (71)

To prove (70), suppose first that Y € BCB(X,t)o}ﬂWE(X,t) =

BB(X,t)ﬁWE(X,t): by [v.32.1ii], we have Y € 3B , and so,
t- < rx(Y)

using [V.15.1i1] and the definition of W_(X,t), (¥,t- %-rx(Y)) €
- = ° =
BW, 3B }Pwe. Thus, in view of (61), [@][x,t](Y)
o(Y,t- % rx(Y)) = 0. To prove the reversed inclusion, let Y € we(x,c),

l 1
= . - — (3 - = =
with (Y) 0: then (Y,t - rx(Y)) we and o(Y,t < rx(Y))

1 ix,e1
0, whence (61) shows that (Y,t- % rx(Y)) € a{B°}mw€, S0
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Y€ {a{B°}ﬁwE}(X,t) = 3B(X, £)W_(X,t) = a{B(x,t)°}ﬁw€(x,:). Therefore,

(70) is true; (71) is proven in the same manner, using [V.32.iv],
[Vv.15.i1], and (62) at the appropriate junctures. Now, clearly (70)
and (71) continue to hold if WS(X,t) is replaced in them by
3
B- P d
e([X](X,t)( )), and we can conclude that grad [¢][x,t]([X](X,t) (P))
is an exterior normal for 3{1B(X,t)°} at [x](x £) (P); recalling (69) and
’

- o] oc

the fact that a > 0, the same must be true of [v](x,t)(P).;.[u ](X,t)(P)'

grad rX([X](X,t) (P)). Statement (vi.4) has been proven.

(iv) (conclusion) Let q > 2: we must still show that
ko
D“v
or for all k if q = w.+ Choose P € 3R, 7 €R, and a coordinate

EC(3RX]R;]R3), and Di:jx and DIZS are in C(3RxR), k = 1,...,9-1

o
system (U,h) 4in 3R with P € U. Define N: UxR *R3 by setting

04 ~ ~
8,0

1.3 4 0m 1.k . 5
e gl 00T BN H e ™S, BN}

*-l)Ez(h(i),E)} (72)

%=1, 3 3y
sijk{(xoh ),l(h(P),c)}{(xoh

-

for PEU and Z € R.

1

Because XOh*~ € Cq(h(U)XR;]R3), it is obvious that D‘ZX?J € C(UXR;IR3)

for k=1,...,9-1, or all k if q = «. By reasoning as in the

proofs of (iii) and (vi), we can deduce that
in U<R, (73

with 1 equal to 1 or -1, as the case may be, and

+ -
The continuity of 9, Jx, and 9 on MR (for q >1) is
sufficiently obvious.

a_a 2 _a
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~

N
Jx = _3

in U<R. (74)

-1 -1
| (™), ohx(h™7), H0n] 4

Now it 1is evident that D},:e and D:JX exist and are continuous at

(P,z) for k=1,...,q-1, respectively, all k. Finally, since

2,0 = vX(P,0),8) = V(x(2,0),0)x], (2, 0)

(75)

- 83(p,;)-x3,'a(r,c) for PE R, LER,

we must have DIZ?J € C(3RR) for k=1,...,9-1, respectively, all Kk,
recalling that DIZX € C(3R><R;R3) for k=1,...,q, respectively, all

k. This completes the proof of (iv). a.

[v.48] REMARKS. (a) Let us agree to establish as standard the

notations v and v introduced in [V.47.ii].

In the following, M € M(q) for some q € W{=}, and (R,X)

is a reference pair for M as in [V.45].

(b) In each of [V.47.v and vi], we have required that (X,t) €
]BOUQO, L.e., (X,t) € 3B, which is in general necessary for the truth
of those assertions. 1Indeed, suppose that (X,t) € 3B, so that
Xe aBt, and X = x(Px,t) for some Pxe 9R. Let (U,h) be a
coordinate system in 3R with PX € U. Then the partial derivatives
of 'r(h-l(°);x,t): h(U) * R will in general fail to exist at h(PX)’
80 we cannot assert in this case that <t 1is in one of the classes

CK(3R). The source of the difficulty here is that T(PiX,t) = O,

80 X = IX](x,t)(PX)’ and grad r, fails to exist at IX](X,t) (Py).
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Similarly, in this case we can generally say neither that IX](X,t)

is a k-imbedding (although it is a homeomorphism of 3R onto
aB(X,t)) nor that dB(X,t) 1is a (2,3;k)-manifold for any k;
exceptions may occur if u(X,t) = 0 (and obviously do occur if M is
null). Indeed, a few rough computations in this case (X,t) € 3B
indicate that if v(X,t) ¥ 0, 3B(X,t) has at X a conoidal type of
singularit.y, the severity of which increases with |u(X,t)|, while the
sign of vu(X,t) determines whether the singularity "points into" or
"out of" ]B(X,t)o; if vu(X,t) = 0, there is no singularity present.
We supply no details to support these rather vague statements, since we
shall have no occasion to deal with the properties of 3B(X,t) for

(X,t) € 3B.
(¢) The bound
lv] <c* on 3B, (1)

following directly from the definition (V.47.2) and the inequality

(v.46.3), has already been cited. Since c* < ¢, the explicit

‘tepresentation (v.47.3) for v readily yields, with (1),

JdB
(\);.B)2 < (c*) /(14v ) = ((:*)2 ;B ;B < czvgti;'m. (2)
Inequality (2) says that 3B 4is time-£{ke with respect to either
Maxwell's equations or the wave equation, in the usual sense.
(d) Each of the functions
g+ diam BC 3
R T N e N N N A N e e N M L L N
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is continuous on R. In fact, we have, for each ¢ €R,

diam B, = diam 38, = sup {|x(P,5)-x(Q,z) | P,Q € 3R}

31

7 = [X(P,2)-X(Q,8) |4

\ for some PC’QC € 3R, by the continuity of X(¢,Z) and the compact-
¥

%) ness of 0JR. Thus, for any £ €R,

% L _ - - _

= dian B, -diam B < [X(P,0)=x(Q,, 0) | 5-IX(P ) -x(Q,,8) |
-.-' ’ - X -

< [xeL,0-x@,,0) | 5+]X(Q 0 -x(q,,0) |5

a similar inequality holding with the roles of £ and ¢ interchanged.
Coupling these observations with the uniform continuity of X| aRxK,
for any compact K CR, we can obviously conclude that (3) is continuous
K on R (even in the absence of a smoothness condition on M). Further,
& again for each g €T,

h‘._n - - 3 .
2 ABBC(aB;) I dAg f Ix(+,0) ary

R’
3B ¢ 3R

whence the continuity of (4) results from that of JX on 3R<R.
. . Thus, in particular, it is legitimate to speak of the (finite)

numbers

,.
NANES
P

max diam B and max A.p, (3B.),
L € K S rex g ¢
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for any compact K C R.

(e) Fix (X,t) € B°UR°; we consider here the map [X"'](X £y

proven in [V.41] to be a homeomorphism of 3R onto 3BNC_(X,t)

(for any (X,t) G]RA). Now, since
* - - [
X*] g ey = (XD g gy tTC5K0),

it is evident from [V.47.v and vi.l1l] that [)'("'](x £) € Cq(aR;IR4).
?
Moreover, a somewhat lengthy computation, of the sort carried out in

the proof of [V.47.vi.5], produces the representation
* . P > 3
J[X ](X,t) - ‘{1-194( ’x,t)} UX](X,t)
0 oc
[T (x, 107 (x, ey "8728 Te X1y o)

1 (o
+ 7 Bz, remad el g gy

(5)
= {1-15, (5%, 0 3 10X) oy o,y
118 g0y *I2T (g ¢y Erad TIXT (g 13

whence it is easy to see that

Jix 0 on oR.

%
Tx,e) ”

Combining these facts, we see that [X*](X g isa q-imbedding, imply-
]

ing that SB~C_(X,t) is a (2,4;q)-manifold and, for each P € 3R,

%
:

DIX*] (g, ) (P): Typ(P) » Tamc_(x,c)(["*](x,:)m) is a bijection.
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For the proofs of certain uniqueness theorems in Chapter 4
of Part I, we have need of a variant of the approximating-domains
fesult of [1.2.43] which is tailored to the geometry associated with
a motion. The appropriate statement is proven in [V.50], following

the preparation provided in [V.49].

[V.49] LEMMA. Let MEM(), and suppose that o and
BER, with a < 8. Taen there exdists a § = §(M,a,8) > 0 4uch

that wienever (Z,r) € (5B) {.e., whenever ¢ € [a,8] and

(a,8]’
zZ€ ch, then

Z+s+-v(Z,8) € 3& i 0 <s < 3§,

and

Z+s-v(2Z,z) € Bg i§ -8 <8 <0.

PROOF. (The reasoning is quite similar to that of [VI.59].)
Fix 7 €R, then Z € aBC. B° is a l-regular domain ([V.47.1i1.2])
and (2,z) € 3B = 3{B°}, so there exist an open neighborhood of

(2,5) in R°,

1l
U(Z,;)’ and a function ¢(Z.C) €C (U(Z,C)) such
that
grad Q(Z’;)(Y,s) 40 for each (Y,s) € U(Z,c)’ (1)
B, oy = (18 €U, ] 0 (hs) =0, (2)
and
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-: of‘ = Y € .
-: BUg,g = 10 €U ol e, (o) < 0)s )
' obviously, then,
:.
e 2%y =B v = {(Y,s) €U | e (Y,s) > 0}. (4)
i @, z,2) (z,2) (z.2)
’ It follows that grad 0(2 z) (Y,s) 1is an exterior normal for 3B
-t 9
ot
\ at each (Y¥,s) € SB.‘\U(Z 2) (cf., [I.2.32.b]). Recalling the form of
i‘.": ’
0 the exterior unit normal given in (V.47.3), we must then have
grad ¢ (Y,s)
(Z,2) = 1 -{vi(Y s)e(a)-u(Y s)e(b)}
: |grad ¢ (1,s) | 2 23/€4 288, T
/ (z,1) n {1407 (Y,8)}
, (3)
— Y,s) € 3B .
;;_J ( ,S) B U(Z,;)
2
o Define grad" ¢ : U >R by
.'J. (Z,C) (z!;)
Wi
~ ¢ - o= (¢ , & 3 6
erad” 0.0 T @0, *a,0.20 20,3 ®
oA
o from (5), it is clear that grad" ¢ (Y,s) 1is an exterior
\': (Z,C)
"' o
normal for 8Bs B{Bs} at Y, for each (Y,s) € BW‘U(Z,Z;)' In
?_-'.: particular, it can vanish at no point of the latter set, which
[N}
n’-
" includes (Z,z). Using the obvious continuity of grad" ¢ on
\:: (z,%)
" U(Z,C)’ we can therefore choose a positive e(z’;) for which we
> 4
..'- C -
,. have B, (z,%) Uez,py @nd | grad °(Z,;)(Y’s)|3 >0 for
-‘.;? (z’;)
'.:':' each (Y,s) € B: (2,z)". Setting
.f. (Z’;)
4 -
= - N Y, €B Z )
N H(Z,c) sup {|grad ¢(z’;)(Y s)|3| (Y,s) . (z,z) }
o (z,%)
-"‘
93
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and

4

. (z,z) 1},

m := inf {|grad" ¢ (Y,s)| (Y,s) € B

it is certainly true that M(z £) <o and m 0.

(z,z) ~

Now, whenever (Y,s) € 34 (Z,z)” and Jo| < ¢ z 1=
(2.0) (z,2) v

e(ZaC)/M(Z,;)’ it is quite easy to see that

4

(Y+o+ grad- ¢ (Y,s),s) € B, (z,z) €U

(Z’;) E(Z,;)

(z,0)°

This allows us to define s (-€ -R wvia
(Y,s)

(z,;)’E(z,c))

V(v,s) (@) = 8z, o (YHor grad® ¢, .\ (¥,8),s) for

lol < €70y
n

z,z)

for each (Y,s) € B: (z2,2)";
(z,z)

then w(Y,s) € Cl(-E for each such (Y,s). We quickly

(2,2)°%(2,¢)’
compute

4

w(Y’s)(O) =0 if (Y,s) € Be(z,c)(z’;) %) :} (8)
sz,s)(o) = grad- ¢(Z’;)(Y+0- grad* ¢(z’;)(Y,s),s)o grad” o(z,c)(Y,s)
3 c 4 _ (9)
for lo| < €(z,0)° (Y,s) Be(z,;)(z,c) »
and
vy (0) = |grad- ¢ (Y s)|2 > ml
(Y,S) (Zyg) ’ 3 - (Zy;)
(10)
for  (Y,9) €8, (2,0,
z,z)
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Directly from (9), the map (Y,s,c) I» WEY 5)(0) is continuous,

and so also uniformly continuous, on the compact set

4 - l. l.‘
BE(Z’C)(Z‘C) XE 2 (Z,;)' 2 (Z ;):l and satisfies (10) on

4 -
Be (z,z) x{0}. From these facts, one can easily show that there
(Z,3)

1l .
exists a number G(Z,c) € (0,'5 e<z’;)] for which

' l 4 -
w(Y’s)(o) > 3%z 0 for (Y,8) € B_ (z,0)",

2,2 (11)

ol < 82,5y

Select any (Y,s) € BIB”"B4 (Z,z) and any o € (0,6
“(z,0) (2,0

using the mean-value theorem along with (8) and (11), for some

):

3 € (0,7) we can write

¢(Z,;)(Y+;' grad” )(Y,s),s) =y )(o)

(R (¥,s

= w(Y,s)<0)+sz,S)(3).c
= Viy,)®0

>0 3

having already seen that (Y+o+ grad” ¢ (Y,s),s) €U and

2,2 (z,z)’

recalling (4), we deduce that
(Y+s+ grad” °(Z c)(Y,s),s) € q°.
»

This implies, in turn, that

.....................................
...........................
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)(Y,s) € Bé whenever (Y,s) E_aBWBz (z,0)

(Z,2)

Y+o+ grad” Q(Z,C

(, : and o€ (O’G(Z,;))'

» Thus, since v = [grad’ °(z,c)151' grad® ¢z oy O™ Bz 0y

Y+ov(Y,s) € B; whenever (Y,s) € MH“B? (z,z)

- . (29;) (12)
. and 0 € (Oymey 1y8(z,0))-

It can be shown in a similar fashion that

x

a2
PRI LA

Y+ov(Y,s) € 3: whenever (Y,s) € MEﬁBz (z,7)

(2,2 (13)

.{‘{"

&

).

and 0 € (-my 1y°S(z,0)0

Having (12) and (13), which hold for each (Z,;) € 5B, the

SANSE]
n.'.\.'f’-.' L/ ' [

& %

proof of the lerma can easily be completed: since (B) is

[a,8]

compact, there can be found a finite set {(Zi.ci)}:_1 in

4 (zi’ci)}:-l covers (3B)

4
-

(3B) such that (B

[a,8] (a,8]"

[
- 55¢3f“**

By setting

}2

.ﬂ; ¢M,a,8) := min {m {=1°

§
one can readily check that we obtain a number possessing the required

;: properties. o.

AT We proceed to the desired Lemma [V.50]. See Figure 8.

7 [v.50] L.EMMA. Let M be a motion in M(q), fct scme q > 2.

s
' ’ S I‘ R

.

‘.'-'.
I.I.

C N e e e T T e _.;- .. --.. - .-_ "'.. .:_,.:_._;_."__.... -_~_-.- ..' .',‘.:_ . . o, W SN ~.\~...:'.‘- .¥- - ~..:_\'~ -{:{.\.‘.V \I

ALY
L4




N T N g O N g e W S W o e W T

Choose a and sem,cum'a<e.DMMQ g§cn each ¢ €R,

Ctans)’ B (g gy ~R by

€
G(Q’B)(Z,C) := (2,8)+e(v(Z,5),0) gon (z,z) € (MB)(Q,B),

and set
e e RONE o . o
B(a,s) = (B )(Q,B) : Ua<;<e {{y € B;, dist (Y,aB;) etx{zgl},
gor € <0,
B 1= (2%)7 = U {{y € B'| dist (Y,3B ) > e}x{g}}
(o) 8) (a,B) a<Z<B z 90, ,

gon € >0,

and

€ .= € . 3
S(a,8) = ¥MB(q, gy MR x(2,8)}.
Then there exdists a positive €0’ depending upon M, o, and B8,
such that, for 0 < |e| < €qr
(<) Gia,e) 4 a (q-1)-imbedding, taking (aB)(a,s)
e .
Lo S(y,p)’
(id) 4§ e <0, BE is a nonmal domain;
(Q:B)
o (iii) 4§ €>0, &>c* and o >0 with
RS
o 3 3
o Bé(s-a)(Ba) c BD/Z(O), then the set
£,p .= RE 3 .
m(u’s) : B(G’B)ﬂ{Bp(O) (a,8)}
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45 a nonmal domadin;

and
(<v)  the exterion unit normal §ield §o sia 2y ©
3 . ]
B{B(a,e)} 48 gdven by
ve =y = -sgn ¢ +v._0(G )-1
(@,8) " Vg € B " (a,8)
(a,8)
Furthen,
3 ,
(v) el_i;mo JG(a,e) 1 uniformly on (3B) (0,8)"
PROOF. The arguments here are, in many respects, similar to

those adduced in the proof of [I.2.43]; cf., [VI.68]. We shall first

make various simple observations: since q > 2, we have (at least) the

inclusion v € Cl(aB;]R3), so that v[ K 1is Lipschitz continuous
whenever K 1is a compact subset of 3B. In particular, this is

true with K = (3B) so that there exists a positive a,

[a,8]
depending on a, B, for which

whenever (21 , ;1) and (z ) € (3B)

2°%2 [«,8]°

Surely, then, {Bg} is a uniformly Lyapunov family, for which

a<;<B
a set of uniform Lyapunov constants is (a,l,d), provided d €

1
(o, 53 ). Note also that (3B) (a,8)°

3 e 3)(
(om)(a,s) := 3IB{Rx(a,B)},

T T e T R T A R Lt AT AT
3R R N AN
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FIGURE 8. Approximating domains of Lemma [V.50]
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being a relatively open subset of the (3,4;q)-manifold 3B, is
again a (3,4;q)-manifold. For each [ €R, (a]B); = BBCX{;} is
easily seen to be a (2,4;q)-manifold. It is convenient to define,

for each ¢ € R, G*: 3B ->]R4 according to

G(z,5) := (Z,0)+e(v(2,2),0)  for each  (Z,7) € B

€

(so that G(a,B) =

GEI (am)<a B))’ and write

y NG )

G[a,B] = [a,B]°

Observe that, for any { € R and non-zero ¢ with |e| sufficient-
ly small (depending upon ), we can regard [I.2.43] as giving a
description of Ge(-,;): 38C +]R4; ¢.3., this map is a
(q-1)-imbedding and, if, say, € < 0, takes BB; onto the set

{y € Bgl dist (Y,BBC) = —e}x{g}, which nmust then be a (2,4;q-1)-
manifold. Finally, by [V.49], there exists a positive &* =

8*(M,a,8) such that

Z+ov(Z2,) € Bg if 0 <o < &%,
for each (Z,Z) € (¢B) [a s]-(1)
Z40v(Z,L) € B‘; if -*<g <0

(i) Let (U,h) be a coordinate system in oB. For any

€ € R,

1 3

-1 ,00 on  h(U) CR;

GEon™t = hlee (von™

1

since v € Cq-l(’a‘]B;R3), it is readily apparent that GSon™" €

Cq-l(h(U) ;R‘). Consequently, Gt e Cq-l(alB;]Ra) . Certainly, Gt

A Al L A A te | salh G At i i S A A th LS N v ‘*.'}V.".";"._v:$
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is then continuous. Any coordinate system in (BB)(OI 8) is also
-~

a coordinate system in 3B, while Gi GE| (3B)(a g)> SO

a,8)
we can conclude as well that G € Cq-l((aB) ﬂRA) and
(a,B) (a,B) ’

Gia g) € CLGB) B)ﬂka), for each real .

We can show that G?G g] 1is injective if le] < 1/a.

~ 5 =
Indeed, if (zl,;l), (22,;2) € (5B) with G ](Zl,cl)

[Q’B] [G,B
€
G[u,S](ZZ’;Z)’ then 8 =%y and Zl+ev(21,;1) = 22+ev(22,c2), so
IZZ-ZlI3 = Ie]-lv(zz,cl)-v(zl,gl)|3 < a-le|-|22-21!3.
Thus, if a+|e| < 1, it is clear that Z, =2,

But now we can use the compactness of (MB)[a 8] to assert that
14

proving our claim.

GTG,B]: (MB)[a’ - Ge((aB)[a 6]) is a homeomorphism if |e| <

Bl

€ €
1/a, whence its restriction G( (EB)(G + G ((aB)(u

a,8)’ ,8) .8)°

must also be a homeomorphism for these same €.

Now, to prove that G° is a (q-1)-imbedding for |e|

a,B)

sufficiently small, we must prove that JGia 8) is positive on
9’
(QB)(u 8) for such €. For this, it is clearly sufficient to
1]
show that

€ 3 =
elimo JGo) | (dB)[a,B] 1  uniformly on (MB)[Q,s], (2)
since JG?Q,B) = (JGE)I (NB)(Q,B)' Moreover, statement (v) shall

follow immediately, once (2) has been verified. To prove (2), we

use the compactness of (3B) and the familiar properties of

[a,8]

coordinate systems to construct a family {(Ul’hl)}lel of

e cammmam o a.m_m_
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B s

coordinate systems in 5B such that I is finite and {U1}1€I

covers (3B)

-1

[a,8]’ while, for each 1 € I, all partial derivatives
,
3
-1 -1
of h ™ and voh " are bounded on h (U ), and |iél (h, ) syl

is bounded below by a positive number on hl(UI). Since

e =1 - -1.3 P Pe o | (4), .. =14 (&)
G Oh1 ),i {(h‘ ),i+€ (v Oh1 )’i}ej +(h1 ),ie4 on ht(Ul)’

a short computation shows that for, say, |e| < 1,

| 2 GEon7hy, | < | /i w’ly, | -
v 7?1t = =1 [ S

{o1 el on hx(Ut)

for each 1 € I, for certain positive numbers {Mt}tel' Thus, in

view of (1.2.11.2),
JGE| U o< 1+M:~]e| for each 1 €1,

for appropriate positive numbers {M{}IGI. But now (2) follows

from (3), recalling that 1 1is finite and {UI}IEI covers

€
(a,B)

whenever |e| is sufficiently small. This implies, among other

(am)[a 8] We have now shown that G is a (q-1)-imbedding
]

€

things, that G(G,B)

((BB)(Q is a (3,4;q-1)-manifold for such
’

8)’

€.

For the proof of the second statement in (i), we shall

first establish the equalities
E d ' = x L4
Cla,a) (OB gy) =Yy g (Y EB| dist (Y,38) = e}x{z)}

if € >0,
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€

; G(a,B)((am)(a,B)) =Y -e}x{z})

(o] . .
s <C<B {{y € Bal dist (Y,BB;)

(5)

SO Ao obinet,

2,

if € <0,

A A
£ a
PP LA Sy

whenever |e| is sufficiently small. Considering (4), we suppose

that 0 < ¢ < min {é6*, d/2, 1/(23)}, with 3 being given in terms
of a in [I.2.37.1i1.4]; note that a > a. Select z € (a,8)
and Y€ Bé with dist (Y,BBC) = ¢. Then ([I.2.20]) there exists

xY € 35; for which 1Y-XY\3 = ¢ and Y-XY € NBB (XY), whence Y
g

must be given by one of XY+cv(XY,c), XY-ev(xY,;). But the latter

lies in Bg, since 0 < e < &%, so

{4
(1,0) = (Ryhev(Xga8)8) = Gy oy (X0,

proving one of the inclusions required. For the other, again let

¢z € (a,8) and choose 2 € ch, so that (2,z) € (MB)(a 8) " Then
€
= [ '
G(G’B)(Z,c) (Z+ev(zZ,8),0) B;x{c},
since 0 < ¢ < 6*. We must show that

§ := dist (Z+ev(Z,3),3B ) := inf |z4ev(Z,2)-Y|, = €.
4 3
Y€ aB;

The inequalities 0 < § < € obviously hold. Assume that the

strict inequality &§ < e 1is true: appealing once more to [I.2.20]

o
."
-
ot
- I

i

and the fact that 0 < ¢ < 8%, we know that there is some Z € 3B,

]

for which

|24ev(z,0)-2], = ¢

ST S
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and
Z+ev(Z,8) = Z+5v(Z,1);

clearly, it must be the case that Z # Z, by our assumption that

§ < €. Since

|2-2]; = |6v(Z,0)-ev(z,0) |4
< (e=8)+e|v(Z,8)-v(zZ,0) |4
< (e-5)+ae-}z-il3

1 .
< (e=-8)+ 3 IZ-Z|3,
" we have
lz-il3 < 2(e-6) < 2¢ < d,

{i.e., Z€ BBCﬁBg(i), and we can apply the estimate [I.2.37.iii.4]

to obtain
|v(Z,z) e grad rz(Z)l < ﬁ-ri(Z).
whence
Ze-ri(z)-v(z,;)o grad ri(z) > -Zéerg(z). (6)
Further,

6% - lZ%v(Z.C)-ilg = r%(2)+62+2t:v(2,;)o(z-i),

L " et Y w7 e " T oW - - . - - - " » - w T~ - -
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Ze-rz(Z)-v(z,;)o grad rz(z) +r§(2) = 62-52.

Remembering that 23e < 1, and using (6), we therefore arrive at

the impossibility

0 < (l-zée)rg(l) < 62-52 < 0.

Thus, 6 = €. Now (4) has been proven for all sufficiently small
positive €. An analogous argument serves to demonstrate that (5)

is correct if -min {&*, d4/2, 1/(2a)} < ¢ < 0.

€
(a,B)

small enough and non-zero, our intention is to prove that, for such

To show that Gia B)((am)(a B)) =S whenever |e| is
9 ?

€,

€ . .
S(a,8) = Ya<ges 1Y E Bl dist (Y,08) = ebx{z}} 1f e>0, (7)

while

€ (o]
S(G,B) -U(!<C<B {{Y € BCI dist (Y,aB;) = _e}x{;}} if € < 0, (8)

whence the desired result shall follow, with (4) and (5). With a

few preliminary developments, (7) and (8) shall follow easily. Let

€
(a,B)

Choose €>0, and set

us first show that B is an open set for each non-zero .

€ a ' x .
B : u;en {{y € BCI dist (Y,ch) > etx{gl}}; 9)

then BF 1{s open. To see this, suppose that (X,t) €B® and

write
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§, = dist (X,3B) := inf {[Y-x|3| Y € 38 1,

so that .61 > e. Let

1
ny =g (6=
We shall show that

B3 (X)x(t-n,, t+n.) CBF, (10)
1 (5.-¢) 1 1

2 1
which will certainly imply that B is open. To prove (10), let

YeR} with |Y-X|3 < % (6,-€). Then

B3 (Y) € Bé, (11)

e+-% (61-5)

for, if |?-Y|3 ; e+ %-(51-5), then whenever Z € Bt’
lz-%]5 2 [2-X[5-[x-¥[5-]¥-¥],
> 8- 3 (6,-¢)-c~ 3 (8,-¢)
=0,

so Y€ Bé (here, we have used the fact that 51 := dist (x,aBt) =
dist (X’Bt)’ which can easily be checked, since X € Bé). Now,

suppose that |t-z| < n so, obviously, |t-g] < %-{e+ % (61-8)}.

1’
Combining (11) with the result of [V.13.ii], we deduce that

3
C A
B (Y) BC'

1
e+ 5 (61-5)-c|t-c|

which shows immediately that Y € Bg and dist (Y,ch) -




~

'.'--- . 1
5 dist (Y'BC) > e, since c|t-g| < 3 (61-5)

c(t-g) > €. Thus, (Y,z) 1lies in IBe, whence (10) is proven.

L.e., et % (él-e)-

]

- )
LA
o

‘. But then, as remarked, it follows that B® is open. Now,
o
:1" BE -lBeﬁ{Rsx (a B)}
.'-:, (G,B) * ?
so we can conclude that Bia 8) is open for each € > 0. Further,
4. ’
N defining
‘.:«_‘ K ]
\('
- B := U {{y € B®] dist (Y,3B ) > -e}x{zg}} for e <0,
o Z€R 4 4
XN
_»:';_- one can show that B® is open for each ¢ < 0, using similar
\_.;‘
3‘“ ) reasoning which appeals to [v.13.1i] at the appropriate juncture
-:, (note that it may well be that B® - @ if |e| 4is sufficiently large,
E:: but the same method of proof is valid). From this it clearly
b L]
)
e follows that BS is open whenever € < 0.
) (a,8)
_:.:.: Next, defining
)
an
1. » ~s
%3 BF := U (Y €8] dist (v,98) > elx{c}} if  e>0, (13
N and
"4
]
wd =€ o
-:_.: B =Yg {{y € Bcl dist (Y,aBC) > -elx{g}}  if € <0, (14)
= we shall show that each B 1is a closed subset of ]R". In fact,
X0
" select any ¢ €R, ¢ ¢# 0. Let ((Yn,cn)):_l be a sequence in
- ~€ 4 ®
o B, converging to (Yo,;o) €ER . If ¢ >0, then {(Yn’cn)}ml c
o] O=- . te = ' U
S Q, so (Yo,co) €, L.e, Y € BC B; BBc , whereas if .
:'_, 0 0 0 :
\J, - r ® (4] s b
% € < 0, then ‘(Yn'cn)}n-l CB", so (Yo,co) €B, 4{.e.,
_, i
r.
% \
'. q
L, 1
2 i
. |
o :
e
“. ------------
.: 5‘]--‘ ‘. ". RSO ""I.. N -J‘..(.-- "'f.‘ -'.Vf. -"‘. -.1— d "‘  Wd X h-’ . = ‘.-": -:.. .d" ------------------------- ST S
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€ B =B uB .
Y0 c z c Therefore, if we show that

0 0 0

dist (Yo,asgo) := inf {[Y-Y0|3| Ye BBCO} > lel, (15)
it will be immediately evident that Y € Bé if ¢>0, Y € Bz
0] 0

if € <0, and (Yo,;o) € B* in either case. To prove (15),

observe first that

Um Y =Y, lm g =2, (16)
n =+ n-=+> o
and
inf {lz-Yn(3| Z € 3B, } > el for each n €N, (17)
n

Suppose, contrary to (15), that dist (Yo,ch ) < le]; then there
0

Y. € - -
exists a point Y, BBCO such that |Y0 ?0|3 dist (Yo,cho) <
4
le|]. Let us employ the reference pair (BC » X 0) for M, wherein
4
X 0(-,;0) is the identity function on ch . By (16), we have,
0
on the one hand,
lim |xc°(§ )-Y |, = |xc°(§ )Y |, o= ¥ -Y ], < |e] (18)
0°%n’""nl3 0°%0’""0'3 0 o'z < I&is
n -+«
CO .
while, on the other, X (Yo,cn) € 38C » So, by (17),
n
Co .
| X (Yo,;n)-‘ln|33 le| for each n €N. (19)

The contradiction resulting from (18) and (19) implies that (15)

is correct. Thus, (Yo,;o) E'ﬁe, and with this inclusion we can
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- ~
0

conclude that BF 1is closed. Now, if we write

B := BNR3x [a,8])
:.'-: Q9B]
e (20)
Y -
,,:_;: UG:C:B {{y € Bz';l dist (Y,ch) > elx{g}} 1if ¢ >0,
and
N ;
.-:'. ~E o =€
& B,,p ‘=B R x[a,8]}

A o
e Vacgep (1Y€ Bl dist (Y,3B) > -e}x{c}} if e <0,
N
o it is evident that ]ﬁ?a 8] is a closed subset of R for each
-.'.l ,
- non-zero € € R.
WS
S
\f As our final preparation for the proofs of (7) and (8), we
RO
o
" shall prove that
{
) ~€ - €~ .
b B[G,B] B(G,B) whenever |e| 1s sufficiently small, ¢ ¥ 0. (22)
'-PQ.- .
s -e e
o First, since B is closed and contains B , the inclusion
[Q,B] (ass)
- £~ ~€
% C - .
::J: B(a,B) B[a,B] must hold for all real non-zero ¢ For the
P
-:-; reverse inclusion, we note that for some ¢* = e¢*(!,a,8) > O,
e
G"(ascx{;}) = {YE Bél dist (Y,38)) = olx{z} if 0 <o < e*, (23)
o
'\::-
e and
"o G7(3B,x{z}) = {Y € B| atst (Y,38,) = -obx{z} if =~e* <o <0, (20)
:;::
:{- whenever 7 € [a,8]; the proof of this statement is essentially the
K
-. same as that of (4) and (5). We examine first the case in which
}_:'.
5t
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€ > 0, and suppose also that ¢ < e*. We choose any point

€

(X,e) €B, g

and consider in turn each of the possible cases:

(a) Suppose that t € (a,B). We have X € B;, with

dist (x,aBt) > e; 1if strict inequality holds, then (X,t) lies in

€ €=
B(G,B) (a,B8)°

Because (23) is valid, we can write X = f{+ev().(,t) for some

CB so we shall assume that dist (X,SBt) = ¢,

X € aBt. Select a sequence (en):-'l in (e,e*) which converges
to €. Then, because of (23), i+env(5(,t) € B; and

dist (f(+env(f(,t),85t) =e ¢ for each n €N, 4{.e., the
sequence ((5(+env(f(,t),t)):_l lies in BE and converges to

(a,8)

e—
(X,t), so the latter is in B(a,S)'

(b) Suppose that t = a. If dist (x,asa) > e, then
(X,a) 1s in the open set B (cf., (9)), which therefore contains
an open "pillbox" B:(X)X(a-b, a+b), with 0 < b < B-a. Thus, the

entire line segment {X}x(a,a+b) lies in IBEEol 8)’ clearly implying

€= Consider the other case, v{z., that in which

(a,8)°
dist (X,BBQ) = £: now we can write X = X+ev(X,a) for some

that (X,a) €B

X € 350. Employing the reference pair (Ba,x“) for M, wherein

Xa(-,u) is the identity on aBa, choose a sequence (Sn):-l
from (a,B) converging to a, a sequence (e:n)::_1 in (e,e*®)

converging to €, and form the sequence (in ] x“(i,sn)+
-]

=1’ which converges to Xa(}.(,a)'i'cv(l'la(:\',a),cx) =

a -~
env(x (X,sn).sn))
¥+cv(X,a) = X. Again by (23), X € B, and dist (in,sss ) =
n n

€, > ¢ for each n € N. Thus, the sequence ((xn’sn))n-l lies

TN . ‘--"}'~ R A A A N I S N g o Vo

. - -, -
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Rl

in B?a 8) and converges to (X,a), whence the latter is in

)

4
(‘,l

E-
B(a,B)'

- -
".;"..'
Ve
.

- & ‘. .. .A ‘.. '_ - o

(c) Suppose that t = 8. The treatment of this case follows

the same lines as that of (b); we omit the details.

The equality ]ﬁ?u 8] -]B?; 8) therefore holds if 0 < € <
? ]
ﬁl, €*; 1its proof for -c* < ¢ < 0 can be carried out in a similar

manner, using (24), so (22) is true.

We can now quickly prove (7) and (8). 1In fact, if 0 < |e| <

€

e*, using (22) and the fact that 'B(a 8)
?

is open,

EY

E—- €=
} = N8 (a,8)"

3B m(a.B)

]

€ ~€
(a,8) (0,8) " Bla,8]

so if, say, ¢ > 0, !

€
a{m(a, 3) b= Ua.<;<6

{y € s;l dist (Y,aB;) = e}x{z}}

U{{y € B&I dist (Y,38)) > e}x{a}}

& AWM 2 S Tar . "

P

u{{y € Bél dist (Y,3B.) > e}x{8}}.

-

€ ‘= € AR
Recalling the definition s(a,B) 3CB(Q’B)} R7x(a,2)}, (7)

results if 0 < ¢ < €*. In the same way, we obtain (8) for

-e¥ < ¢ < 0.

Having (4), (5), (7), and (8) if 0 < |e] < e*, the ?
equality Gia a)((iﬂ)(a 8)) - s?a 3) holds for these ¢, and (i)

has now been completely substantiated. Note, for example, that
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€ . '_ - *
s(a,B) is a (3,43q-1)-manifold for 0 < |e| < e*.

€
(G,B)

for each € < O

(i1) It is to be shown here first that B is

€=-0 €
,8) ~B(a,8)’

with Iel sufficiently small. In view of (22), we must show that

regularly open, <.e., that B

o
=€ €
B[a,B] B(u,B) whenever ¢ < 0, le| sufficiently small.

Let € < 0. We begin by verifying that

B := Veg (Y€ le dist (¥,38)) > -e}x{z}}
(o] - [o]
=Yg UYE Bc‘ dist (Y,38) > -e}x{c}}} (25)
= B¢ .

It has already been proven that Be is open, so the obvious inclusion
B® C B® allows us to assert that B® C]ﬁeo. Assume next that

(X,t) en’seo, so X€ B‘t’ vith dist (X,38) > -, and there exist
numbers r € (0,-2¢) and n > 0 such that Bi(x)x(t-n, t+n) C

B®. Certainly, then,

BX(X) C {Y € BY| dist (¥,98) > -e}. (26)

We wish to show that dist (x.aBt) > =g; suppose dist (x,aBt) =

-€: there is some X € 3B, with li-x|3 = -¢, and the point

L3 ’ 3
X+ TeS) (X-X) clearly lies in Br(x). However,

., .
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which implies that dist |X+ Ez%;y (i—X),aBt < =g, 1in violation

of (26). Therefore, dist (X,BBt) > -e, so (X,t) € B, Equality
(25) follows. Application of this result, supposing |e| is

small enough that (22) holds, gives directly

o
€-0 =

= €
Bla,8) = Bla,8)

= BNR3x[a,8]1)°

n‘;‘o ®3x(
= o) x G,B)}

- BSYR X (a,8)}

€
" Ba,8)"

This proves our original assertion.

Choose a', 8' €ER with a' <a and 8 < g'. Let e <0
be such that |e| < e*(M,a',8°) (cf., (24)), and each result ob-
tained during the proof of (i) holds not only for o and B8, but

also when o and B are replaced by o' and B8', respectively:

we shall employ the criteria established in Remark [I.2.41.c] in

. s
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IG
. -.’ ;".a"lﬁf"d‘

order to show that the corresponding set Bi is a.normal

a,B)

domain whenever |e| 1is small enough. Note first that Bia 8) ¥

.
44,
a

—y
-

¢. In fact, by (24), we see that

.
.

P
o ot

{(Yye BZI dist (¥,98) > -e}x{z} # @  for each € [a,8]. (27)

€
(G,B)

we have just seen that this set is regularly open. Moreover, the

One can show easily that B is bounded by using [V.10], while

boundary of Bi can be written as

a,B)

'

g 2 €
P =B, a1 ®B,8) = ToUllgs

RN
« &,

€

a{]B(OL,S)

€
(a,3)’

Ca

K~ -

wherein

Nl ry i= (Y € Bgl dist (Y,3B)) = -e}x{a}}

) U{{Y € sgl dist (Y,3B;) = ~e}x{8}},
“ e sm ° - x
" r, = (Y€ Bul dist (Y¥,38 ) > -e}x{a},

and

P4

ity ""

rg = {Y€ Bg| dist (Y,9B,) > -e}x{8}.

A,
.
» s '
)

LS

It is, for the most part, routine to check that this decomposition

a .
y 4

fulfills the requirements of [I.2.41l.c]. FO is the union of two

3
.’

.J
“l {l ,l ‘.l "l

compact sets which are (2,4;q-1)-manifolds if |e| is sufficiently

small, as we remarked prior to the proof of (i). Pa and TB are

non-void (cf., (27)), while it is trivial to see that each is

N - A'-".

DORR
1 s

} as well as in 1R3><{a} and ]R3X{B},

€
relatively open in a{m(a,B)

»
O A A

o

----------------------
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respectively; from the latter fact, each is a (3,4;=)-manifold.

Just as obvious are the inclusions I‘; C]R3><{cx}, I‘; ot IRBX{S}.

X o €
From (i), it is known that s(a,B) G(a,B)((aB)(a,B)) is a
(3,4;9-1)-manifold. By its very definition, Sia 8) is open in

B{IBE(:Q B)}' Let us show that

€= € o
s(a,e) = s(a’B)U{{Y € Bal dist (Y,38 ) = -e}x{a}}

(28)
€

o Iy ”
U{{y € BBI dist (Y,aoB) = -e}x{B}} C S(a',B')'

Indeed, since o' <a and B < B', the inclusion claimed in (28)
is clear from the results of the proof of (i), with « and 8

replaced by o' and B', respectively, for (8) then gives

€ (o] . r
s(a',B') UC!'<C<B' {{Y € B;l dist (Y,QBC) = -E.}X'LC}}.

To prove the equality in (28), suppose first that X € B: with
dist (x,aBa) = -¢. There exists X € aBa such that X = i+ev(i,a).‘

Using the reference pair (Ba,xa) for M, employed in the proof

of (i), and selecting a sequence (sn)n-l in (a,B8) converging

a,s a,: ©
to a, the sequence ((X (X,sn)+ev(x (x’sn)’sn)’sn)nsl lies in
Sia 8) and converges to (X,a), showing that this point is in
9

Sig 8)" We arrive at the same conclusion in case X € Bg with
’

dist (X,SBB) = -¢, Thus, the union appearing in (28) is contained
E-
(a,B)°

exists a sequence ((xn’tn))n-l s(a,B)

so lim X =X, 1lim ¢t_=¢t, and X € B° with
n n n t
n-o n-—- o n

E- 3
(a,B)’

converging to (X,t),

in § On the other hand, suppose (X,t) € § there

B e AU At Y T n T e e T T e e e T e N T e Y e B S
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MY <

~

dist (X ,38. ) = -¢ for each n €N. Since {t } . C (a,8), we
n tn n ' n=1 -

FAC AR 4N

(I
P

have t € [a,B8]. We wish to show that dist (x.aBt) = -¢, For

I'i

I
.

each n €N, there exists X_ € 33 for which X_ = X +ev(X_,t );
n € n n n’ n

. -l
L in fact, it is clear that (X t ) ( g )(x ,t ), whence it
. ¥
7 follows that (in)” converges to a point X € 3B, and (X,t) =
- -1
- 4
- ( ,’B,)(X,t), or (X t) = ( ', )(X t). In view of (24) (written
,t for o', B'), it"follows that dist (x,aBt) = -¢. Consequently,
o
\: (X,t) is in U@i?ﬁﬁ {{y € BCI dist (Y,aBC) = -e}x{g}}, which is
) just the union appearing in (28) (cf., (8)). Having completed the
i: proof of (28), we can assert that Si; 8) is contained in the
. ?
A (3,4;q9-1)-manifold S?a' 8')" Finally, since reasoning as in [VI.68]
% implies that
A - o
' r,=1{ys Ba.' dist (Y,38 ) > -e}x{al,
*\
X and
JI
2,
- rp = {Y€BY| dist (Y,38;) > -c}x(s},
N provided |e| 4s sufficiently small, we can also use (28) to
>
> conclude that T NS¢~ and Tons€” o cr..

(a B) 8 "(a,B) 0

Having checked that all requirements of [I.2.41.c¢] are ful-

A
"
.

filled by mia gy if €<0 and le| is sufficiently small,
9

the set is a normal domain for such €.

(ii1) By proceeding as in the proof of (ii), mutatis

L S S L, W R




mutandis, one can show that 'm( 8) is a regularly open subset of
!
Rﬁ whenever ¢ 1s positive and small enough that (22) holds; we

shall suppose that this has been done.

Now, select ¢ > c¢*, and fix any positive » -so large that
3 3
s B C . c .
Bc(B- )( )CB /2( ). Obviously, Bu Bp/Z(O) But also, for

each Z € (a,8], by recalling [V.10], we find that

3

3
B, = Brgmod © Pz B € Bipmay Ba) © 7520
Then it is easy to show that for each ¢ € (0, p/2],
{y EIR3| dist (Y,B;)‘: o} C B:(O) whenever ¢ € [a,8], (29)

hence that

{y € BE( dist (Y,&BC) > 0}032(0) is non-void and open

3 (30)
in R for each z € [a,8].
Thus, defining
E,O
Bo,g) ! ( ,8) {B (0)<(a,B)} for € € (0, 0/2),

we obtain for each such ¢ a non-void open subset of ZlR4 possess-
ing a non-void {g-section which is relatively open in Iméx{;), for
each ¢ € [a,B). We wish to show that whenever e 1is sufficiently

small the corresponding B is a norma. Jomain; for this, we

( .B)
shall rely once again upon the result of [I.2.41.c]. Let us first

satisfy ourselves that
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€~  Arp3 - . .
m(u,B) B(a,B) {Bp(O) x[{a,B8]} for each sufficiently small

(31)
{ ' positive €.

DR €,0 €= 3 -
’ Cc N
o ' The inclusion B(a,s) m(a,B) {BD(O) x{a¢,8]} is plain enough,

N since the latter set is closed and contains Bi;pe). Suppose €
’

g

is so small that (22) holds. Then

SRERRER

“e
L4

e-

Ba,8)

N(B2(0) (s, 81}
(32)
03 = U“icis {y e B&I dist (Y,BBC) > €, |Y|3 < olx{gl}}.

In fact, if we choose ¢ € (0, min {e*, 0/2}) and assume that

0 <e <€, then we have not only (32), but also

N (Y € B}| atst (7,38 = o} C 32(0) for each o € (0,%)
b | (33)
and ¢ € [a,8],

o~

s

OO
WAARE

{y € Bél dist (Y,BB;) > e}"’Bg(O) is non-void and open

»
a_

(34)

o
2

3

in R for each z € [a,8],

&

g

and

*?ﬂ;\‘%‘

’

G°(38cx{c}) = {Y € B&l dist (Y,ch) = o}x{g} if o € (0,¢)

~ _ (35)
O and ¢ € [a,B],

N following from (29), (30), and (22), respectively. Now, choose
(x,t) €BS

',‘: . (Q’B)
N X € BEﬁBg(O)-, and dist (x,ast) > €: then one can construct a

f"{Bg(O)-X[a,B]}, i.e., by (32), such that t € [a,8],

| YOERRARA 1

f\!"l
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sequence in 'Bia 8) which converges to (X,t). The proof of this
9

fact is most easily accomplished by using (33)-(35) and proceeding
essentially as in the proof of (22), considering each of the cases
t € (a,8), t=a, and t = B. The additional subcases which must
be examined here, because of the presence of the bounding set
332(0)*[&,8], can be handled in an obvious manner, with (34). We
shall omit the details of the verification. We conclude that

(X,t) Eimig 8)° and so (31) is true whenever 0 < ¢ < min {€, p/2}.

Now, again if 0 < € < min {€, p/2}, since 'B?u 8) is
regularly open and (31) holds, we find immediately that Bi&ps) is

also regularly open:

me"’-o- B~ .N(83(0) x[a,8]11°
(a,8) (a,B) "p [a,

-0
€

'B(G,B)

n{Bz(O)x(a,en

€

'B(G,B)

n{n§<o>x<a,e>}

EyP
(a,8)°

=B

Choose a', 8' €ER with a' <a and R < R', Let € >0
be such that ¢ < min {&, p/2, e*(M,a',8')} and each result obtained
during the proof of (i) holds for a, B and with o', B' replac-

ing a, B, respectively. Then ZBE is a non-void, bounded,

(a,B)
regularly open subset of Iﬁ. Moreover, it is easy to identify a

- '
decomposition of a{m‘z;"e)} -mi;pe)nme(;"s) which fulfills all

requirements set forth in [I.2.41.c] if € 1is sufficiently small;
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the détails can be supplied by basing the reasoning on ‘the proof

carried out in (ii). Thus, Bi;os) is a normal domain whenever
?

¢ 1s sufficiently small and positive.

(iv) We suppose |e| to be so small that the statements

proven in (1)-(i1ii) hold. Fix (Z,g) € (aB)(a 8)" We shall first
show that
3 .
TSE (G(a’e)(Z,C)) TaB(Z.C) for le| sufficiently small, (36)
(G,B)
for which it suffices to secure the inclusion
€ -
'l’se (G(Q’B)(Z,C)) C TBB(Z’C) if lel is small enough. (37)
(a,8)
To prove (37), let BET c (Gia B)(Z,;)). There exist 6 > 0
. 5(a,8)
€ 1 ; €,_ € € = €
nd 47 € CUE,OE) with ¥T(-8,8) €5, g, VIO = 6 @0,
and :pe (0) = 8. Define VY: (-6,86) -*]RA by
‘ - e €
v(o) : G(Q’B)Ow (o) for lo] < 6, (38)
and fv: (-6,8) *]Rl' according to
£,(0) := (voy(0),0) for lo] < 6. (39)
Let us assume, for the moment, that
1 4
vl (-84:6,) € CT((=23,80)R")  for some &, € (0,¢]. (40)

Then, since W((-éo.éo)) C3B and ¢(0) = (Z,z), it follows that

................... -
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v'(0) € TaB(Z,c). Further, recalling that B® is a q-regular

domain ([v.47.11i.2]), there exist an open neighborhood of (Z,z)

4 q
in R, U(z’;), and a function o(z’;) € Cc'(u ) such that

(Zyg)

/

vt = (121,972 (u(r,9) -0, 8))

-1
= |grad ¢(z’;)(Y,s)|4 grad Q(Z,c) (Y,s) (41)
€ M .
for each (Y,s) € 3B U(Z,C)
- = , . S
Thus, for the function grad 4)(2,&) “(Z,c),l ¢(Z,;),2 Q(Z,;),B)

Cq-l(U );R3). (41) evidently implies that

@,z

i L
v(Y,s) = |grad <D(z,c)(Y,s)|3 grad ¢(z’;)(Y,s)

(42)
€ o .
for each (Y,s) € 3B U(Z,c)
In view of the definition (39), (40) and (42) together imply that
f, 1s of class ¢ ona neighborhood of 0. Since va(c)lz =1
for |o| < &, we find that fv(O)Of\')(O) = 0, whence
, 2 -1/2 ,
VaB(Z,C)°fV(0) = {1+uv°(2,5)} (v(Z,8),-v(Z,5))e((voy) '(0),0)
- (422,072 (0)e1! (0)
-0,
L.e., fG(O) € TaB(Z,;). But then, observing that
€ € e-l € €
VvV = G(G,S)OG(Q,B)ow = G(a,B)ow = w+efv on (-§,8), (43)

the desired result
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% 8 = 45 (0) = y'(0)4e£!(0) € T, (2,0)
- v v 3B’
follows. This implies that (37), hence also (36), is correct,
j:f:f provided (40) obtains.
o
Let us check, then, that (40) is true for all e with |g]
Tt sufficiently small, independently of the point (Z,z) chosen in
i] (3B) (a,8)" First, by the g-regularity of B° and the compactness
oK i
- of (BB)[m g]* We can find a finite family of open subsets of ]R"
9
Ca p
::: forming a cover for (3B) (,8]" {Ui}i=1’ and a corresponding
-
AY collection of functions {¢i € Cq(Ui)}gsl such that, for each
Y i€ {1,...,p}, for certain positive numbers m, and M,
el
o o < |grad- ¢i|3 <M on U, (44)
.F:':
"
|°1,jk| <M on U for j,k=1,2,3, and 4, (45)
\‘;
WK
! : and
- 1
v(Y,s) = |grad- 451(Y'.s)|3 - grad” ¢1(Y,s)
' - - ~ (46)
\g for each (Y,s) € amnui,
.\J
" wherein grad® ¢, := (9 ® ®. .)€ Cq-l(U ;IR3)- cf., the
i i,1° "1,2° 1,3 i ’ ’
'::: reasoning accompanying (41) and (42). Because of (44) and (45),
:':::'. we have
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l.l
R
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(l
-

N

2 .
<- f ¢ 3
T +
5 3 [Tg—?%‘g;] <Y's>]
{. =7k 1<3<3
e det 1<k<4 > 0
X
i:: kO 0 0 1‘ (47)
J:.
- whenever le} is sufficiently small,
SN
::-:: for each (Y,s) € BB“-Ui, for
\'u
L))
::1: each 1€ {1,...,p}.
;';.: Now, choose any ¢ fulfilling the latter requirement (and the
o~
~‘ restrictions previously imposed). Choose £ € {1,...,p} such that
-.1:: 4
N (z,z) euz, and define F: UQX(-G,G) +TR by
:lj::f grad" ¢, (Y,s) .
_:\-‘::: F(Y,s,0) := (Y,s)+c [grad- °Q(Y’S)r3 0=y (o)
25 - (48)
t
- for (Y,8) € U, lo| < &;
PN
*.\
i
&js it 1s clear that F € Cl(UEX(mé,G) -,Ra) (recalling that we €
2’y
LS
Cl((-é,é);Ra)). Since (43) gives
'Cf € .
koo v(o)+e(voy(a),0)-y (o) = 0  for  |o] < &, (49)
)
4
with (46) we find
F(4(0),0) = y(a)+e(v(¥(0)),00-y"(c) = 0  for o] < &, (50)
i so, in particular,
-..::
o F(2,2,0) = F(y(0),0) = 0. (51)

L) .’-.*_ %-“" N .\‘? N \-.\.‘
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Moreover, by (47), it is easy to see that

det ((rék(z,;,o» ) >0.. (52)

1<j,k<4

Having (51) and (52), we can apply the implicit function theorem to
F and the point (Z,z,0), and combine the properties of the
resultant implicitly defined function ¥ € Cl((-3,5) R") with (50)
and the continuity of ¢ to deduce that ¢ and @ must coincide
in some neighborhood of 0. The details of this reasoning differ
in no essential from those laid out in [VI.68], in the proof of

[I.2.43). Clearly, (40) now follows.

Maintaining the restrictions placed on |e|, from (36) we

can conclude that

N e (6°(2,8)) = No(2,0). (53)
(U)B)
If ¢ >0, 'Bia 8) is a normal domain, while if € <0 and o 1is
chosen as in (iii), then ZB?&DB) is a normal domain; in either case
the exterior unit normal field for Sia 8)’ via 8) =y c , 1s
’ ’ 5(a,8)

defined. The result (53) implies that Vic

3
,8)(C(a,g) (Z:0)) must
be given by one of WHB(Z’C)’ —va(Z,C). Consider the case in which

€ <0. It is easy to see that the set

(t;:)c = {Y € B‘S’I dist (Y,3B ) > -¢}

is a (q-1)-regular domain in :m?, with exterior unit normal field

given by

. “a Y ate - -
E RN A B N
S GON JILYS VUL P IR T T, “a .
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-1
E .
Voo v(G(a,B)(',s)) (54)
3(B))
s'e

whenever |e| 1s sufficiently small and s € (a,8). In fact, (54)

follows by arguing as in the proof of [VI.68.iii], noting that .
Y+ov(Y,s) € Bz with dist (Y+ov(Y,s),aBs) = -g whenever |o] 1is

sufficiently small, s € (a,8), and Y€ aBs. On the other hand,

we can also show that

€
va(Bo) = v(a’s)(-,s) for each s € (a,B), (55)
s'¢e

wherein v denotes the field of unit magnitude constructed

€
(a,8)

el €2 €3
. ’ e ’
from (v(a,B)’ v(u,B)’ v(u,B)) Indeed, by choosing s € (a,8)
c g° - - 13
and Y Bs with dist (Y,aBs) ¢, so (Y,s) € s(a,B)’ then
the (q-1l)-regularity of BS at (Y,s) shows that there exist

(a,8)
an open neighborhood of (Y,s) in :mé, U?Y s)° and a function
]
y a=1(ye 1.2.27].
Q(Y,s) €cC (U(Y,s)) with the properties described by-[ ]
Thus, by Remark [I.2.32.b],

€

(Y,s) = |grad ®,

s)(Y,s)lzl- grad °§Y,s)(Y’s)' (56)

vS
(G ’ B)
-1
€

Since v )(Y.s) is a non-zero multiple of %HB(G(Q, 6)(Y’s))’

€

(a,8
PN € €

ve see that (o(Y,s),l(Y’s)’ °(Y,s),2(Y’s)’ ¢(Y’s)’3(Y,8)) %0,

3 £ €
so it can be assumed that (°(Y,s),l’ o(Y,s),Z’ O(Y,s),3) does
not vanish in U?Y )’ But then it is clear that the open neighbor-
?

hood of Y in R’ given by U; = (¥ E]R3| (Y,s) € UEY s)} and
3

the function Y+ ¢ (¥,s) 1in Cq—l(uE possess the properties

(Y,s) Y
described in [I.2.27] relative to the (g-l1)-regular domain
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(B:)e C]R3 and the point Y € a(B:)e. This, in turn, implies that
~ AE -1 ~ L€
va(Bo) ) | grad ¢(Y,5)(Y’s)|3 grad ¢(Y,s)(Y,s),
s’e

. L€ ce (&€ 3 €
wherein grad ¢(Y,s) : (°(¥,s),1’ °(Y,s),2’ ¢(Y,s),3)’ Now (55)

follows from (56) and (57). Finally, upon comparing (54) and (55),

keeping in mind the relation

o (1237172,
VsB {1+u°}

(V"U) s

we infer that

€

€
v(u’s) (G(Q,B) (29;)) = Vam(zgg) for each (Z’;) € (aB)((!,S),

whenever € <0 and lel is

sufficiently small.

Analogous reasoning leads to the equality

€

€
v(a,S)(G(a,B)(z’C)) = ‘VMB(Z’C) for each (z,7) € (aB)(a,

whenever ¢ 1is positive and

sufficiently small.
The assertion of (iv) is a consequence of (58) and (59).

(v) This statement has been established in the proof of

(1). o.
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V.A. APPENDIX
A TOPOLOGICAL RESULT
The following topologicai fact implies the validity of
Lemma [V.6]:

LEMMA, let T1 be a topological Apace, T2 a fist-countable
Hausdond4 space, and f: T1 - T

§ollowing property: .

, @ continuous bifection with the

whenever K, 48 a compact subset of T

thete exists a compact ch T 1 such

2'

that Kz C f(Kl).

Then €1 s continuous, 80 £ 48 a homeomorphism.

PROOF. In this setting, it suffices to show that f-lz

T2 -+ T1 is sequentially continuous. Accordingly, let (xi):’.1

be a sequence in T2 converging to X, € TZ' The set K, :=

{xil i=0,1,...} 4s compact in T2’ so there exists a compact
C . ;= :

K, €T, such that K, C £(K,). Now, f, £ K;: K > ()

is bijective and continuous when Kl and f(Kl) are equipped -

with the respective relative topologies: since Kl is compact
-1

and f(Kl) is Hausdorff, f1 is a homeomorphism, so f1 : f(Kl) -
w

Kl is continuous. Clearly, (xi)i-l converges to X, in f(Kl)'

whence
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-1 -1 -1 -1,
lim  f “(x,) = 1lim f,7(x,) = £ (%) = £ “(x,) i
o SR T 1 o 0

which implies, in turn,

lim f-l(xi) = f-l(xo) in T

i + =

1’

LI A i N N

TS TN YT iR irad "'j‘,‘

n Kl,

as well. Thus, f—l is sequentially continuous, and so also

continuous, since T2 is a first-countable space. 0.
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MISSION
| of
Rome Air Development Center

RADC plans and executes neseanch, development, test and
selected acquisition programs in support o4 Command, Control
Comminications and Intelligence (C31) activities. Technical
and engineering support within aneas of technical competence
48 provided to ESD Program 0ffices (P0s) and other ESD
elements. The prineipal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance o4 ground and aerospace objects, intelligence data
collection and handling, information system technology,
{onospheric propagation, solid state sciences, microwave

physics and electronic reliability, maintainability and g

compatibility.
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